Theology

Making Biblical Scholarship Accessible

This document was supplied for free educational purposes. Unless it is in the public domain, it may not be sold for profit or hosted on a webserver without the permission of the copyright holder.

If you find it of help to you and would like to support the ministry of Theology on the Web, please consider using the links below:

Buy me a coffee https://www.buymeacoffee.com/theology

PayPal https://paypal.me/robbradshaw

A table of contents for Journal of the Transactions of the Victoria Institute can be found here:
https://biblicalstudies.org.uk/articles_jtvi-01.php

JOURNAL OF

THE TRANSACTIONS
 $0 \underset{ }{3}$

 The Fittoria

 The Fittoria
 OR

 }

EDI'TED BY THE HONORARY SECRETARY.

VOL. II.

LONDON:
(flathlisfey for tfy Institute)
ROBERT HARDWICKE, 192, PICCADILLY, W.
1867.

ORDINARY MEETING, June 3, 1867.

Captarn E. G. Fishbourne, R.N., C.B., in the Chair.
The Minutes of the last Meeting were read and confirmed, after which the following paper was read by the author:-

ON THE GEOMETITICAL ISOMORPHISM OF CRYSTALS AND THE DERIVATION OF ALL OTHER FORMS FROM THOSE OF THE CUBICAL SYSTEM. By Rev. Walter Mitchell, M.A.

1. When elementary substances, or their chemical combinations, pass from a state of vapour; or from a fluid condition into that of a solid; or if they are deposited by evaporation from a fluid holding them in solution, there is a tendency of their particles to arrange themselves according to certain laws of symmetry.
2. Thus solids more or less symmetrical, and with few exceptions bounded by smooth, plane, or flat surfaces, are produced. Such solids are called coystals, and their plane surfaces are termed faces.
3. Some crystals are remarkable for perfect symmetry of form. Among these may be found solids formed with mathematical accuracy, whose geometrical properties had fascinated the ancient geometers ages before they were known to exist in the productions of nature. Others are exceedingly complex, being formed by the combination of faces parallel to those belonging to several simpler forms; the relative positions of these simpler forms to each other being regulated by certain mathematical laws.
4. The more complex forms being reduced to the combination of the simplest from which they can be derived, it is found that all the simpler forms can be grouped together in six distinct classes or systems.

5 . The crystals of any one substance may generally be reduced to forms belonging to one system; but there seems to be no limit to the number of combinations of different species of these forms which may take place in any individual crystal.
6. To the rule that all the crystals of a particular substance should have their faces parallel to those of the forms of one system, there are numerous exceptions.
7. The following are the six systems :-

1st. The Cubical; called also the tesseral, tessular, octahedral, regular, isometric, and monometric.
2nd. The Pyramidal; called also the tetragonal, square prismatic, quadratic, monodimetric, dimetric, fourmembered, viergliedrig, and the two-and-one axial. 3rd. The Rhombohedral; called also the hexagonal, monotrimetrical, sechsgliedrig, and the three-andone axial.
4th. The Prismatic; called also the rhombic, trimetric, binary, unisometric, orthotype, orthorhombic, zweigliedrig, and one-and-one axial.
Jth. The Oblique; called also the monoclinohedric, hemiprismatic, hemiorthotype, clinorhombic, hemi-hedric-rhombic, augitic, zwei-und-eingliedrig, and the two-and-one-membered.
6 thi. The Anorthic; called also the doubly oblique, triclinic, triclinohedric, anorthotype, clinorhomboidal, tetarto-prismatic, tetarto-rhombic, eingliedrig, and the one-and-one-membered.

Cubical System.

8. The forms of the cubical system possess the highest possible degree of symmetry when compared with those of the other systems. They are divided into two groups,-the holohedral, or perfectly symmetrical, and the hemihedral, or half-symmetrical; the latter being derived from the former by being parallel to, or possessing only half their faces, grouped together after certain laws.
9. The holohedral, or perfectly symmetrical forms, are seven in number, and are shown on Plate I. Of these, three-the cube (fig. 1), the octahedron (fig. 7), and the rhombic dodecahedron (fig. 8), are invariable forms, each having but one species, and each the same invariable angles, either of their faces or inclination of their faces.

The remaining four forms are not invariable, and there are an infinite variety of species, each differing from the other in the angles of their faces and their inclinations to each other.

The half-symmetrical, or hemihedral forms, are represented in figs. 15, 17, 19, 21, 23, and 25, Plate III.

Holohedral forms, cubical system.

10. The Cube (fig. 1, Plate I.) is bounded by six equal faces, each face, such as $O_{1} O_{5} O_{8} O_{4}$, being a perfect square;
it has therefore eight solid angles, $O_{1}, O_{2}, \& c ., O_{3}$, each angle being formed by the union of three planes; and twelve equal edges, such as $O_{1} O_{2}, O_{2} O_{3}$, \&c. The inclination of any face to another is measured by the angle contained between two perpendiculars drawn from any point in the edge made by the intersection of the two faces, each on one of the adjacent faces. In the cube this inclination of two adjacent faces is 90°. The facial angles, or the angles between two edges of a face, such as $O_{4} O_{1} O_{5}$, are always 90°.
11. The Octahedron (fig. 7, Plate I.) is bounded by eight equal faces, each face, such as $C_{\mathrm{I}} C_{2} C_{3}$, shown on a plane surface (fig. 38, Plate IV.), being an equilateral triangle. It has six solid angles, C_{1}, C_{2}, \&c., C_{6}, each formed by the union of four planes, and twelve equal edges; the inclination of adjacent faces is an angle of $109^{\circ} 28^{\prime}$, and the facial angle, such as $C_{1} C_{2} C_{3}$, is 60°.
12. The Reombic Dodecahedron (fig. 5, Plate I.) is bounded by twelve equal faces; each face, such as $o_{1} C_{2} o_{5} C_{3}$ (fig. 30, Plate IV.), is a geometrical rhomb bounded by four equal lines, $o_{1} C_{2}$ being parallel to $o_{5} C_{3}$, and $o_{1} C_{3}$ to $o_{5} C_{2}$. The greater angles of the rhomb $C_{2} 0_{1} C_{3}$ and $C_{3} o_{5} C_{2}$ being $109^{\circ} 28^{\prime}$, and the lesser, $o_{1} C_{2} \theta_{5}$ and $o_{1} C_{3} 0_{5}, 70^{\circ} 32^{\prime}$. It has twenty-four equal edges, such as $O_{1} o_{1}, O_{1} o_{2}$, \&c., eight solid angles, o_{1}, o_{2}, \&c., o_{8}, formed by the union of three planes, and six solid angles, C_{1}, C_{2}, \&c., C_{6}, formed by the union of four planes. The inclination of adjacent faces is 120°. This form is called by some German writers the granatoëdron, as being a characteristic form of the garnet.
13. These three forms, the cube, octahedron, and rhombic dodecahedron, are called invariable forms, as, though differing in size, they always have similar faces and angles; that of the cube being a square, that of the octahedron an equilateral triangle, and that of the rhombic dodecahedron a rhomb whose larger angle is $109^{\circ} 28^{\prime}$.
14. The four other forms (figs. 2, 3, 4, and 6, Plate I.) are called variable, each presenting an infinite variety of species, differing from each other in their angles of inclination and those of their faces.
15. The Three-faced Octahedron (fig. 6, Plate I.) is bounded by 24 equal faces, each being an isosceles triangle, $o_{1} O_{2} O_{3}$ (fig. 32, Plate IV.). These faces are so grouped together as to form a solid having eight solid angles, formed by the union of three planes, o_{1}, o_{2}, o_{3}, \&c., o_{8} (fig. 6) ; the plane angles being the largest of the isosceles triangles; and six solid angles, O_{1}, C_{2}, \&c., O_{6}, each formed by the union of eight of the equal angles of the isosceles triangles.

There are 12 longer edges, such as $C_{1} C_{2}, C_{1} C_{3}, \& c$., and 24 shorter, such as $o_{1} \mathrm{C}_{1}, o_{1} \mathrm{C}_{2}$, \&c. The 12 longer edges are the edges of an octahedron. It may be formed by placing on every face of the octahedron a three-faced pyramid on a equilateral triangular base. The angles of these isosceles triangles differ in different species of the three-faced octahedron, within certain limits to be described hereafter.

The synonyms for this form are the pyramidal octaliedron, triakisoctuhedron, trioctahedron, and galenoid.
16. The Four-faced Cube (fig. 2, Plate I.) is bounded like the last by 24 equal faces, each being an isosceles triangle, such as $C_{1} 0_{1} o_{4}$ (fig. 34, Plate IV.), but grouped so together as to form a solid having six solid angles, $C_{1}, C_{2}, \& c ., C_{6}$ (fig. 2), each formed by the union of four of the largest angles of the isoscles triangles, and eight solid angles, $o_{1}, o_{2}, \& c$. . o_{8} (fig. 2), formed by the union of six of the equal angles of the isosceles triangles. This form has 24 shorter edges, such as $C_{1} o_{1}$, $O_{1} o_{2}, \& c$. , and 12 longer ones, such as $o_{1} o_{4}, o_{1} o_{5}, \& c$. The 12 longer edges are those of a cube.

It may be formed by placing on every face of the cube a four-faced pyramid on a square base.

The angles of the isosceles triangles differ for cach particular species of the four-faced cube.

Synonyms.-Pyramidal cube, heatetrahedron, tetrakishexahedron, and fluoride.
17. The Twenty-four-faced Trapezomedron (fig. 4, Plate I.) is bounded by 24 equal faces, each face being a deltoid or trapezium, $C_{1} d_{1} o_{1} d_{2}$ (fig. 89, Plate IV.) ; that is, a four-faced figure having two longer equal sides, $C_{1} d_{1}$ and $C_{1} d_{2}$, and two shorter equal sides, $o_{1} d_{2}, o_{1} d_{1}$. These 24 equal trapeziums are so grouped together as to form a solid having six solid angles, $C_{1}, C_{2}, \& c ., C_{6}$, formed by the union of the plane angles of four trapeziums, equal to $d_{1} \mathrm{C}_{1} d_{2}$; eight solid angles, $o_{1}, o_{2}, \& c$., o_{s}, formed by the union of the plane angles of three trapeziums, equal to $d_{1} o_{1} d_{2}$; and 12 solid angles, $d_{1}, d_{2}, \& c ., d_{12}$, formed by the union of the plane angles of four trapeziums, equal to $C_{1} d_{1} 0_{1}$. This form has 24 equal longer edges, such as $C_{1} d_{1}, C_{1} d_{2}$, and 24 shorter edges, such as $o_{1} d_{1}, o_{1} d_{2}$, \&c. The angles of the deltoids or trapeziums differ for each particular species of the twenty-four-faced trapezium.

Synonyms.-Icositessarahedron, icositetrahedron, trapezohedron, and leucitoid.
18. The Six-faced Octaredron (fig. 3, Plate I.) is bounded by 48 equal faces, each face being a scalene triangle, $C_{1} o_{1} d_{2}$ (fig. 36, Plate IV.). These 24 triangular faces are so grouped together as to form a solid having six solid angles, C_{1}, C_{2}, \&c.,
C_{6}, each formed by the union of eight equal plane angles at the points C_{1}, C_{2}, \&c. ; eight solid angles, formed by the union of six equal plane angles at the points $o_{1}, o_{2}, \& c ., o_{8}$; and 12 solid angles, formed by the union of four plane angles at the points $d_{1}, d_{2}, \& c$., d_{12}.

This form has 24 edges, each equal to the edge $C_{1} d_{1}, 24$ each equal to the edge $\mathrm{C}_{1} o_{1}$, and 24 each equal to $o_{1} d_{1}$.

The angles of the triangular faces of this form differ for each particular species of the siax-faced octaluedron.

Synonyms.-Hexakis-octahedron, hoxoctakedron, tetraliontaoktaëdron, pyramidal granatohedron, triagonal polyhedron, and adamantoid.
19. These seven forms, grouped together on Plate I., have this relation in nature, that any substance forming crystals of any one of these forms may, and does sometimes, form crystals of any one of the other forms, or parallel to their faces. But when these forms are combined on any one crystal, as in fig. 29*, Plate IV.*, the forms to which the faces are parallel, except in the case of what are called twin crystals, always have a certain fixed position with regard to each other. These forms have not only this natural relationship to each other, but they have also certain geometrical relations, which we shall proceed to describe.
20. Looking at Plate I., the forms present no relationship to each other. Plate II. shows them conuected together by beautiful geometrical laws.
21. In Plate II. we see that each of the six other forms can every one of them be inscribed, as geometers term it, in the cube.

Fig. 8, Plate II., shows the cube having each of its faces divided into eight equal triangles, by joining the opposite angles of each square by two diagonals, such as $O_{1} O_{8}, O_{4} O_{5}$, meeting in C_{2}, the centre of the face, and by two other lines, such as $D_{1} D_{9}, D_{8} D_{53}$ also meeting in C_{1}, and joining the centres D_{1}, D_{9} of the edges $O_{1} O_{4}, O_{5} O_{8}$, and D_{5}, D_{8}, the centres of the edges $O_{1} O_{5}$ and $O_{4} O_{8}$.

Fig. 9, Plate II., shows the Four-faced cube inscribed in the cube, and we see that the six solid angles of the twenty-four faced cube, $C_{1}, C_{2}, \& c ., C_{6}$ touch the six centres of the six faces of the circumscribing cube.

Fig. 10. The Six-faced octahedron inscribed in the cube, six of its solid angles, C_{1}, C_{2}, \&c., C_{6}, touching the centres of the six faces of the circumscribing cube.

Fig. 11. The Twenty-four-faced trapezohedron inscribed in the cube, six of its solid angles, $C_{1}, C_{2}, \& c ., C_{6}$, touching the centres of the six faces of the circumscribing cube.

Fig. 12. The Rhombic dodecahedron inscribed in the cube,
six of its solid angles, C_{1}, C_{2}, \&c., C_{6}, touching the centres of the six faces of the circumscribing cube.

Fig. 13. The Three-faced octahedron inscribed in the cube, six of its solid angles, C_{1}, C_{2}, \&c., O_{6}, touching the centres of the six faces of the circumscribing cube.

Fig. 14. The Octahedron inscribed in the cube, its six solid angles C_{1}, C_{2}, \&c., C_{6}, touching the centres of the six faces of the circumscribing cube.

Cubical Axes.

22. The lines formed by joining the opposite centres of the faces of the cube $C_{1} C_{6}, C_{5} C_{3}$, and $C_{2} C_{4}$ (fig. 27, Plate IV.), are called the cubical axes of the cube. These three lines are equal to each other, and are perpendicular each to two opposite faces of the cube; they intersect in A, the centre of the cube. In fig. 27 two other sets of axes are shown, four $O_{1} O_{7}$, $O_{2} O_{8}, O_{3} O_{5}$, and $O_{4} O_{6}$, joining the opposite solid angles O_{1}, $O_{2}, \& c ., O_{6}$, of the cube ; six others, $D_{1} D_{11}, D_{2} D_{12}, D_{3} D_{9}$, \&c., $D_{8} D_{6}$, joining the opposite centres $D_{1}, D_{2}, \& c ., D_{12}$ of the edges of the cube; both sets of axes passing through A, the centre of the cube. The four axes $O_{1} \widehat{O}_{7}, \& c ., O_{4} O_{8}$, fig. 27, Plate IV., are evidently the four diagonals of the cube, and are represented fig. 9, fig. 10, \&c., to fig. 14, Plate II., by lines marked thus - -. -. The line $D_{1} D_{11}$, fig. 27, is parallel and equal to a line drawn from O_{1} to O_{6}, and is therefore equal to a diagonal of one of the faces of the cube. The 12 axes $D_{1} D_{11}, D_{2} D_{12}, \& c$., $D_{6} D_{8}$, are therefore each equal to a diagonal of the face of the cube. These lines are thus represented - - - - fig. 9, fig. 10 to fig. 14, Plate II.

Octamedral Axes.

23. If the equilateral triangle $C_{1} C_{2} C_{3}$, representing one of the faces of the octahedron (tig. 33, Plate IV.), has its three sides bisected by d_{1}, d_{2}, d_{5}, and $C_{1} d_{5}, C_{2} d_{2}$, and $C_{3} d_{1}$ be drawn meeting each other in the point o_{1}, this point o_{1} will represent the centre of gravity of the triangle $C_{1} O_{2} C_{3}$, and any of the shorter lines do will be a third of the longer one, $C d$. The octahedron inscribed in the cube fig. 14, Plate II., has all its edges bisected by the points $d_{1}, d_{2}, \& c ., d_{12}$, and each equilateral triangle divided into six triangles by lines $C l l$ meeting in $o_{1}, o_{2}, \& c ., o_{8}$, the centres of the eight faces of the octahedron.

It will be neen in fig. 14 that the six axes, such as $D_{2} D_{19}$,
pass through two opposite bisections, d_{2}, l_{12}, of the opposite edges $O_{1} C_{3}$ and $C_{5} C_{6}$ of the octahedron.

The four axes, such as $O_{1} O_{7}$, pass through the centres o_{1}, o_{7} of the opposite and parallel faces, $C_{1} C_{2} C_{3}$ and $C_{6} C_{5} C_{4}$ of the octahedron, and are perpendicular to both of them.

Owing to this property, the four axes $O_{1} O_{7}, \& c ., O_{4} O_{6}$, are called the octahedral axes of the cube.
24. This property may be demonstrated as follows :-

Describe a square (fig. 27^{*}, Plate IV.*), $A C_{1} D_{1} C_{2}$, having each of its sides $=O_{1} D_{5}$ (fig. 27, Plate IV.).
$A C_{1} D_{1} C_{2}$ is evidently a fourth of the square $O_{1} O_{5} O_{8} O_{4}$, forming a face of the cube (fig. 27, Plate IV.). .

Draw the diagonals of the square $C_{1} C_{2}$, and $A D_{1}$, meeting in the point $d_{1} . C_{1} C_{2}$ bisected in d_{1} will represent on a plane surface in (fig. 27^{*}, Plate IV.*) the edge of the octahedron $C_{1} d_{1} O_{2}$ seen in perspective in (fig. 14, Plate II.).

Produce $D_{1} C_{1}$ and $O_{2} A$ (fig. 27*) to O_{1} and D_{5}, making $C_{1} O_{1}$ and $A D_{5}$ each $=A D$, a diagonal of the square $D_{1} O_{1} A O_{2}$.

Join $O_{1} D_{5}$, make $A d_{5}=A d_{1}$. Join $O_{1} d_{5}$ and $A O_{1}$, meeting in o_{1}.
Then $O_{1} O_{1} d_{5}$ and $A o_{1} O_{1}$ (fig. 27*) represent on a plane surface the lines similarly shown in perspective in (fig. 14, Plate II.)
25. To facilitate calculation we shall choose one of the sides of the square $C_{1} A C_{2} D_{1}$ as our unit.

Then $A D_{1}=\sqrt{2}$ and $A d_{1}=A d_{5}=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}$
By plane trigonometry $\tan A d_{5} C_{1}=\frac{A C_{1}}{A D_{5}}=\frac{1}{\sqrt{\frac{1}{2}}}=\sqrt{2}$.
And angle $A d_{5} C_{1}=54^{\circ} 44^{\prime} 8^{\prime \prime}$.
Now (fig. 14, Plate II.) the lines $C_{1} d_{5}$ and $O_{6} d_{5}$ are both by construction perpendicular to the edge $\mathrm{C}_{2} \mathrm{C}_{3}$ of the octahedron of two adjacent faces at the point d_{5}.

The angle $C_{1} d_{5} C_{6}$ therefore measures the inclination of these faces; but this angle is evidently twice the angle $A d_{5} C_{1}$ (fig. 27^{*}, Plate IV.*). What is true with regard to the angle of inclination over the edge $C_{1} \sigma_{6}$ is true by similarity and symmetry of construction of all the other edges of the octahedron. And therefore the angle of inclination of any two adjacent faces of the octahedron is $109^{\circ} 28^{\prime} 16^{\prime \prime}$.
26. Again (fig. 27*, Plate IV.*) $\tan A O_{1} D_{5}=\frac{A D_{5}}{O_{1} D_{5}}=\sqrt{2}$.
but $\tan A d_{5} C_{1}=\sqrt{2}$. Therefore $A O_{1} D_{5}=A d_{5} C_{1}$;
also $O_{1} A D_{5}=90^{\circ}-A o_{1} D_{5}=90-A d_{5} C_{1}$; consequently
$A o_{1} d_{5}=90^{5}$, and the line $A o_{1}$ is perpendicular to $C_{1} d_{5}$ at the point o_{1}.

By symmetry of construction the line $O_{1} o_{1}$ (fig. 14, Plate II.)
is perpendicular to the three lines $C_{1} d_{5}, C_{2} d_{2}$, and $C_{3} d_{1}$, and consequently to the plane face $C_{2} C_{2} C_{3}$ of the octahedron.

Likewise by symmetry of construction each of the four axes $O_{1} O_{7}, \& c ., O_{4} O_{6}$, are respectively perpendicular to two opposite and parallel faces of the octahedron.
27. From triangle $A O_{1} D_{5}$ (fig. 2^{*}) we have

$$
A O_{1}^{2}=O_{1} D_{5}^{2}+A D_{5}^{2}=1+2=3 .
$$

Therefore $A O_{1}=\sqrt{3}$.
In right-angled triangle $C_{1} A d_{5} ; \quad C_{1} d_{5}{ }^{2}=C_{1} A^{2}+A d_{5}{ }^{2}=1+\frac{1}{2}=\frac{3}{2}$
Therefore $O_{1} d_{5}=\sqrt{\frac{3}{2}}$.
But triangles $A o_{1} d_{5}$ and $A D_{5} O_{1}$ are similar.
Therefore $\frac{A o_{1}}{A d_{5}}=\frac{A D_{5}}{A O_{1}}$ and $A o_{1}=\frac{A d_{5} \cdot A D_{5}}{A O_{1}}=\frac{\sqrt{2} \cdot \sqrt{2}}{\sqrt{3}}=\frac{\sqrt{3}}{3}$
Consequently $A o_{1}=\frac{1}{3} A O_{1}$.
Again by similar triangles $A d_{5} o_{1}$ and $C_{1} d_{5} A$.

$$
\frac{o_{1} d_{5}}{d_{5} A}=\frac{A d_{5}}{d_{5} C_{1}} \quad o_{1} d_{5}=\frac{\left(A d_{5}\right)^{2}}{d_{5} C_{1}}=\frac{1}{3} \sqrt{\frac{3}{2}}=\frac{1}{3} C_{1} d_{3} . \quad \text { Also } A d_{5}=\frac{1}{2} A D_{5} .
$$

28. Hence, referring to (fig. 14, Plate II.), we see that when the octahedron is inscribed in the cube, the three cubical axes, $C_{1} C_{6}, C_{2} C_{4}$, and $C_{3} C_{5}$ join together the opposite solid angles of the octahedron. The four octahedral axes $O_{1} O_{7}$, $O_{2} \mathrm{O}_{8}, \& \mathrm{c} ., \mathrm{O}_{4} \mathrm{O}_{6}$, pass through the centres of two opposite faces of the octabedron and are perpendicular to them.

The points o_{1}, o_{2}, \&c., being one-third of the distance of the centre of the cube from the solid angles O_{1}, O_{2}. \&c., of the circumscribing cube.

Also that the six axes $D_{1} D_{11}, \& c ., D_{6} D_{8}$, joining the opposite centres of the edges of the cube, pass each through two opposite edges of the inscribed octahedrou. The distance of the centre of the cube from the centre of the edge of the octahedron being half the distance of the centre of the edge of the cube from that point.
29. Referring to fig. 27*, Plate IV.*, we have already shown, $\S 25$, that the angle $A d_{5} C_{1}=$ angle $A O_{1} D_{5}=54^{\circ} 44^{\prime} 8^{\prime \prime}$, consequently, since $O_{1} A D_{1} O_{1}$ is by construction a parallelogram,

The angle $C_{1} A O_{1}=54^{\circ} 44^{\prime} 8^{\prime \prime}$, and the angle $O_{1} A D_{5}=$ $35^{\circ} 15^{\prime} 52^{\prime \prime}$.

Hence the angle such as $C_{1} A O_{1}$ which any octahedral axis $A O$ makes with any adjacent cubical axis $A C$ is $54^{\circ} 44^{\prime} 8^{\prime \prime}$; and the angle such as $O_{1} A D_{5}$ which the octaledral axis $O A$ makes with any adjacent axis $A D_{5}$ is $35^{\circ} 15^{\prime} 52^{\prime \prime}$. This latter axis is called a rhombic axis.

Rhombic Axes.
30. Describe a square $D_{1} C_{1} A C_{2}$ (fig. 28*, Plate IV.*) having its equal sides one-half the side or edge of the circumscribing cabe. Join the diagonals $C_{1} C_{2}$ and $D_{1} A$ meeting in d_{1}. Produce $D_{1} C_{1}$ to O_{1} and $C_{2} A$ to D_{5}, making $C_{1} O_{1}$ and $A D_{5}$ each $=A D_{1}$. Join $C_{1} D_{5}$ and $O_{1} A$ meoting in o_{1}. Draw $O_{1} d_{5}$ perpendicular to $A D_{5}$. Then since $O_{1} O_{1} D_{5} A$ is a rectangular parallelogram, it follows $A O_{1}$ is bisected in $o_{1}, o_{1} d_{5}=\frac{1}{2} O_{1} D_{5}$ and $A d_{5}=\frac{1}{2} A D_{5}$.

I'hen referring to (fig. 12, Plate 11.),-the square $C_{1} D_{1} C_{2} A$ represents on a plane surface (fig. 28*), and the parallelogram $C_{1} A D_{5} O_{1}$ the same figures shown in perspective in (fig. 12, Plate II.) ; the former being one-fourth of a section of the cube drawn through the points $D_{1} D_{3} D_{11} D_{9}$, and the latter onefourth of the section drawn through $O_{3} O_{1} O_{5} O_{7}$.
$C_{1} d_{1} C_{2}, C_{1} o_{1}, o_{1} d_{5}, \& c .$, representing the lines similarly marked in the perspective figure of the rhombic dodecahedron inscribed in the cube.
31. Now fig. 30, Plate IV. Draw $C_{2} C_{3}=C_{1} C_{2}$ (fig. 28*), on both sides $C_{2} C_{3}$ as base, describe two isosceles triangles having their equal sides, such as $C_{2} 0_{1}=C_{1} o_{1}$ (fig. 28*); join the diagonals $C_{2} C_{3}$ and $o_{1} O_{5}$ meeting in d_{5}. . $C_{2} o_{5} C_{3} o_{1}$ will represent on a plane surface a face of the rhombic dodecahedron, which can be inscribed in a cube whose edge is double $C_{2} D_{1}$ or $O_{1} D_{5}$ (fig. 27^{*}).
32. (Fig. 28*, Plate IV.*) $\quad D_{1} d_{1}$ is perpendicular to $C_{1} d_{1} C_{2}$, and also $D_{5} d_{5}$ is perpendicular to $o_{1} d_{5}$. Hence, referring to (fig. 12, Plate II.), $D_{1} d_{1}$ is perpendicular to $C_{1} d_{1} C_{2}$, and $D_{5} d_{5}$ is perpendicular to $o_{1} d_{5}$. Hence, by symmetry and similarity of construction, $D_{5} d_{5}$ is perpendicular to $o_{1} 0_{5}$, and $C_{2} C_{3}$ meeting in d_{5}; and therefore $D_{5} d_{5}$ is perpendicular to the face $o_{1} C_{2} O_{5} C_{3}$ of the rhombic dodecahedron, and passes through d_{5}, its centre of gravity.
33. Hence by symmetry and similarity of construction comparing (fig. 12, Plate IV.) with (fig. 5 , Plate I.), every axis $D_{1} D_{11}, D_{2} D_{12}, D_{3} D_{9}$, \&c., $D_{6} D_{8}$, joining the opposite centres of the edges of the circumscribing cube, are each perpendicular to, and pass through the centres of gravity of opposite and parallel faces of the inscribed rhombic dodecahedron. Thus $D_{1} D_{11}$ is perpendicular to $C_{1} o_{1} C_{2} o_{4}$, and $C_{4} o_{6} C_{6} o_{7}, D_{2} D_{12}$ is perpendicular to $C_{1} 0_{1} C_{3} o_{2}$ and $C_{5} 0_{8} C_{6} o_{7}$, \&c. From this property these axes are called the rhombic axes.
34. Again referring to (fig. 28*, Plate IV.*), we see that $A o_{1}=\frac{1}{2} A O_{1}$ and $A d_{1}=\frac{1}{2} A D_{1}$. Hence by similarity and symmetry of construction (fig. 12, Plate II.) we see that the rhombic dodecahedron, inscribed in the cube, touches the centre of
each face of the cube, $C_{1}, C_{2}, \& c ., C_{6}$, by one of its four-faced solid angles; cuts each octahedral axis $A O_{1}, A O_{2}$, \&c., by $o_{1}, o_{2}, \& c$., one of its three-faced solid angles, at a distance $A o_{1}$, the $\frac{1}{2}$ of $A O_{1}$. Also each semi-rhombic axis cuts the centre of the rhombic face, such as $C_{2} 0_{1} C_{3} o_{5}$ at $d_{5}, A d_{5}$ being $\frac{1}{2} A D_{5}$.

To inscribe the three-faced Octahedron in the Cube.

35. (Fig. 29, Plate IV.) Describe the square $C_{1} D_{1} C_{2} A$, having each of its sides equal to $O_{1} D_{1}$, fig. 27. Draw the diagonals $C_{1} C_{2}$ and $D_{1} A$ meeting in d_{1}.

Produce $D_{1} C_{1}$ and $C_{2} A$ to O_{1} and D_{5}, make $A D_{5}$ and $C_{1} O_{1}$ each equal to $A D_{1}$. Join $O_{1} D_{5}$. In $A D_{5}$ take $A d_{5}=A d_{1}$.

Produce $A C_{1}$ to M. For distance $A M$ see § 37. Join $d_{5} M$, cutting $A O_{1}$ in o_{1}. Then join $C_{1} o_{1}$.

Then referring to (6g. 13, Plate II.), $C_{1} d_{1} C_{2}$ represents the edge of the three-faced octahedron, $C_{1} o_{1}$ and $o_{1} d_{5}$ the corresponding lines shown in perspective.
36. To draw the three-faced octahedron inscribed in the cube (fig. 27, Plate IV.).

Describe a square $O_{1} O_{5} O_{8} O_{4}$; draw $O_{4} O_{3}$ at such an angle and such a length that none of the edges or axes of the cube may obscure each other. Then draw $O_{1} O_{2}, O_{5} O_{6}$, and $O_{8} O_{7}$ parallel and equal to $O_{4} O_{3}$. Join $O_{3} O_{2}, O_{2} O_{6}, O_{6} O_{7}$, and $O_{7} O_{3}$. Also join $O_{1} O_{7}$, $\mathrm{O}_{2} \mathrm{O}_{8}, \mathrm{O}_{3} \mathrm{O}_{5}$, and $\mathrm{O}_{4} \mathrm{O}_{6}$ meeting in A , the centre of the cube. These diagonals of the cube are the four octahedral axes of the cube.

Bisect $O_{1} O_{2}$ in $D_{1}, O_{1} O_{2}$ in D_{2}, \&c., $O_{8} O_{7}$ in D_{12}; join $D_{1} D_{11}$, $D_{2} D_{12}, D_{3} D_{9}, D_{4} D_{10}, D_{5} D_{7}$, and $D_{6} D_{8}$, all intersecting in A. These are the six rhombic axes of the cube.

Lastly take C_{1} the intersection of the diagonals of the face $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3} \mathrm{O}_{4}, \mathrm{C}_{2}$ that of the diagonals of the face $\mathrm{O}_{1} \mathrm{O}_{5} \mathrm{O}_{8} \mathrm{O}_{4}, \& \mathrm{c}$. Join $C_{1} C_{6}, C_{2} C_{4}$, and $C_{3} C_{5}$ intersecting in A. These are the three cubical axes of the cube.

Then take a pair of proportional compasses and set them so that $A o_{1}$ (fig. 29, Plate IV.) be the distance between the shorter legs, and $A O_{1}$ between the longer legs of the compass.

Then in fig. 27 , take the distance $A O_{1}$ with the longer legs and mark off $A o_{1}$ with the shorter; in the same way mark off the points o_{2}, o_{3}, \&c., o_{8}, on the other octahedral axes.

Lastly (fig. 13, Plate II.) prick off from this construction of (fig. 27, Plate IV.) the points $C_{1}, C_{2}, \& c ., C_{6} ; D_{1}, D_{2}, \& c ., D_{12}$; $O_{1}, O_{2}, \& c$., O_{8}; and $o_{1}, o_{2}, \& c ., o_{8}$. Draw the same lines as in fig. 27.

Join $C_{1} C_{2}, C_{2} C_{3}, \& c ., C_{1} 0_{1}, C_{2} o_{1}, C_{3} 0_{1}, C_{1} o_{4}, C_{2} 0_{4}, C_{5} 0_{4}, \& c$. Then d_{1}, d_{2}, \&c., will be the points where the rhombic axes bisect the edges $C_{1} C_{2}, C_{1} C_{3}, \& c$. Join with dotted lines $d_{1} o_{1}$, $d_{2} 0_{1}$, \&c.; then (fig. 13̈, Plate II.) will represent in perspective the three-faced octahedron inscribed in the eube.

In the solid itself the eight lines $O o$ arc each equal $O_{1} O_{1}$ (fig. 29, Plate IV.), the twelve lines $D d$ are each equal $D_{1} d_{1}$, or $D_{5} d_{5}$ (fig. 29).
37. The distance of the point M from A (fig. 29, Plate IV.) is arbitrary, so long as $A M$ is greater than $A C_{1}$.

For every point chosen for M, wo have a value for $A o_{1}$, which gives a distinct species of three-faced octahedron.

Speaking generally, taking $A C_{1}$ as a unit, $A M$ may represent any whole number or fraction greater than unity.

The following values of $A M$ have been observed in natural crystals:-
$A M=2 A C_{1}, \frac{3}{2} A O_{1}, 4 A O_{1}, \frac{7}{4} A O_{1}, \frac{5}{4} A O_{1}$, and $\frac{65}{6} A O_{1}$.
38. Comparing (fig. 29, PlateIV.) with (fig. $27 *$, PlateIV.*), we see that M coincides with C_{1}, and $A o_{1}=\frac{A O_{1}}{3}$ for the octahedron; and with (Plate IV.*, fig. 28*), $A o_{1}=\frac{A O_{1}}{2}$ and $o_{1} d_{5}$ is parallel to $A C_{1}$ in the rhombic dodecahedron. In which case the point M is said to be at an infinite distance from A.
39. Hence referring to figs. 12, 13, and 14, Plate 1I., we see that the point o_{1} of the three-faced octahedron cuts the octahedral axis at some point between $\frac{A O_{1}}{2}$ and $\frac{A O_{1}}{3}$; there being a distinct species of three-faced octahedron for every one of these points; the distance $A o_{1}, A o_{2}$, and $A o_{8}$ being the same for the same species.
40. Hence the rhombic dodecahedron, fig. 12, and the octahedron, fig. 14, are the two limiting forms of the threefaced octahedron.
41. If we construct (fig. 14) the edges of the cube in wire and all the lines of the octahedron, such as $C_{1} d_{5}, C_{3} d_{1}$, \&c., in elastic threads; then if strings be fastened to o_{1} tying together $O_{3} d_{1}, C_{2} d_{2}$, \&c., and these strings pass over pulleys at the points $o_{1}, o_{2}, \& c ., o_{8}$, if they be pulled uniformly so that o_{1}, o_{2}, \&c., o_{8} pass from $\frac{A O_{1}}{3}$ to $\frac{A O_{1}}{2}$ along the octahedral axes, the model will show in that finite space of time every one of the infinite number of species of three-faced octahedrons that can theoretically lie between fig. 14, the octahedron, and fig. 12, the rhombic dodecahedron inscribed in the cube.

Looking at the three figures, 12, 13, and 14, we see that the twelve lines, such as $C_{1} d_{1} C_{2}$, the edges of the octahedron, remain unaltered, the changing lines being represented by $C_{1} o_{1}$ and $o_{1} d_{5}$. As the point o_{1} travels from $\frac{A O_{1}}{3}$, fig. 14, to $\frac{A O_{1}}{2}$, fig. 12, the
apex o_{1} rises from the triangular base $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$, in fig. 14, till two adjacent planes, fig. 12, over the odge $O_{1} d_{1} C_{2}$, such as $o_{1} C_{1} C_{2}$ and $o_{4} C_{1} C_{2}$, fig. 13, come into the same plane, fig. 12.

Fig. 14 having eight plane faces, passes through an infinite series of forms, such as fig. 13 , bounded by 24 plane faces, and terminates fig. 12 in a form bounded by twelve plane faces.
42. If (fig. 32, Plate IV.) we draw $C_{2} C_{3}=C_{2} C_{1}$ (fig. 29, Plate IV.), and describe on $C_{2} \mathrm{C}_{3}$ the isosceles triangle $\mathrm{C}_{2} \mathrm{o}_{1} \mathrm{C}_{3}$, having each of its equal sides $C_{2} 0_{1}$ and $C_{3} 0_{1}=C_{1} o_{1}$ (fig. 29), then the triangle $C_{2} o_{1} C_{3}$ will represent, on a plane surface, one of the 24 equal faces of the three-faced octaledron which can be inscribed in a cube whose face is equal $O_{1} O_{4} O_{8} O_{5}$, fig. 27.
43. Twenty-four of these triangles drawn on a plane surface of cardboard can be cut out and folded together so as to make a model of the three-faced octahedron. Such drawings are callcd "nets." Nets ready drawn and fit for cutting and folding and making models for all the principal forms of crystals, by Mr. James B. Jordan, are published in Murby's Science and Art department Text Book, "Elementary Crystallography."
44. Referring to (Plate IV., fig. 29), we see that it is the distance of the point M from A which determines the point o_{1} in $A O_{1}$; or referring to (fig. 13, Plate II.) the eight points $o_{1}, o_{2}, \& c ., o_{8}$, which taken at equal distances from the centre of the circumscribing cube in the octahedral axes, determine the species of the three-faced octahedron. If (fig. 29, Plate IV.) we take $A C_{1}$ as unity and call $A M=m, m$ then determines the species of the three-faced octahedron, m being any whole number or fraction greater than unity.
45. Now comparing (fig. 29, Plate IV.) with (fig. 13, Plate II.) we see that any particular face, such as $o_{1} \mathrm{C}_{2} \mathrm{O}_{3}$, cuts two cubical axes $A C_{2}$ and $A C_{3}$ in points C_{2} and O_{3}, and the third axis $A C_{1}$ produced in M, or at distances $A C_{2}, A C_{3}$, and $A M$; or 1,1 , and m. Since the line $o_{1} d_{5}$ cuts $A C_{1}$ in M, consequently the plane ${ }_{o_{1} C_{2} C_{3}}$ produced also cuts $A C_{1}$ in M. What is true for one face, by the similarity and symmetry of construction of the three-faced octahedron (fig. 13, Plate II.), is true for every other of the 24 faces. If m be a fraction represented by $\frac{h}{l}$, then the following are the most receired symbols for the threefaced octahedron.
$\frac{h}{h} O$ Naumann ; $k h h$ Miller ; and $a^{\frac{k}{\hbar}}$ Brooke, Levy, and Des
Cloizeau.
46. The following species have been observed in nature, having these respective values for m; viz., $2,3, \frac{8}{2}, 4, \frac{7}{4}, \frac{\frac{8}{4}}{4}$, and $\frac{65}{64}$. The annexed table gives the respective symbols of the
principal crystallographers for these forms, together with the minerals in which faces of them have been found.

Naumann.	Miller.	Brooke,\&c.	Minerals.
20	122	$a^{\frac{1}{J}}$	Amalgam. Fluor. Pharmaco- Argentite. Franklinite. siderite. Blende. Galena. Pyrite. Cuprite. Magnetite. Skntterudite. Diamond. Perowskite. Spinelle.
30	$1 \begin{array}{lll}1 & 3 & 3\end{array}$	$a^{\frac{1}{3}}$	Cuprite. Fluor. Galena.
$\frac{3}{4} \mathrm{O}$	$\begin{array}{llll}2 & 3 & 3\end{array}$	$a^{\frac{3}{3}}$	Fahlerz. Garnet. Cuprite.
40	$1 \begin{array}{lll}1 & 4 & 4\end{array}$	$\alpha^{\frac{1}{4}}$	Galena. Kerate.
$\frac{7}{4} \mathrm{O}$	$\begin{array}{llll}4 & 7 & 7\end{array}$	$a^{\frac{7}{7}}$	Galena.
40	$4 \quad 5 \quad 5$	$a^{\frac{4}{5}}$	Galena.
$\stackrel{8}{8} 9^{5} \mathrm{O}$	646565	a_{64}^{64}	Alum.

47. To find the ratio of the octahedral axis of the threefaced octahedron to that of the circumscribing cube, or of $A o_{1}$ to $A O_{1}$.

Fig. 29, Plate IV. By construction $O_{1} D_{5}=1$ and $A D_{5}=\sqrt{2}$.
Therefore $\tan A O_{1} D_{5}=\sqrt{2}=54^{\circ} 44^{\prime}$;
And therefore $O_{1} A D_{5}=35^{\circ} 16^{\prime}$.
Also $\tan M d_{5} A=\frac{A M}{A d_{5}}=\frac{m}{\frac{1}{2} \sqrt{2}}=m \sqrt{2}$.
But $A o_{1} l_{5}=180-\left(o_{1} A d_{5}^{\prime}+A d_{5} M\right)=180^{\circ}-35^{\circ} 10^{\prime}-A d_{5} M$.

$$
=144^{\circ} 44^{\prime}-A d_{5} M .
$$

Hence $\sin A o_{1} l_{5}=\cos \left(90-A o_{1} d_{5}\right)=\cos \left(90-144^{\circ} 44^{\prime}+A d_{5} M\right)$.

$$
=\cos \left(A d_{5} M-54^{\circ} 44^{\prime}\right) .
$$

But in triangle $A o_{1} d_{5}, \frac{A o_{1}}{A d_{5}}=\frac{\sin A d_{5} M}{\sin A o_{1} d_{5}}$
Therefore

$$
\begin{aligned}
A o_{1} & =A d_{5} \frac{\sin A d_{5} M}{\sin A o_{1} d_{5}^{\prime}}=A d_{5} \frac{\sin A d_{5} M}{\cos \left(A d_{5} M-54^{\circ} 44^{\prime}\right)} \\
& =A d_{5} \frac{\sin A d_{5} M}{\cos A d_{5} M \cos 54^{\circ} 44^{\prime}+\sin A d_{5} M \sin 54^{\circ} 44^{\prime}} \\
& =A d_{5} \frac{\tan A d_{5} M}{\cos 54^{\circ} 44^{\prime}+\tan A d_{5} M \sin 54^{\circ} 44^{\prime}}
\end{aligned}
$$

But $A d_{5}=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}$ and $\tan A d_{5} M=m \sqrt{2}$.
$\sin 54^{\circ} 44^{\prime}=\frac{A D_{5}}{A O_{1}}=\frac{\sqrt{2}}{\sqrt{3}}$ and $\cos 54^{\circ} 44^{\prime}=\frac{O_{1} D_{5}}{A O_{1}}=\frac{1}{\sqrt{3}}$
Hence $A o_{1}=\frac{1}{\sqrt{2}} \frac{m \sqrt{2}}{\sqrt{\frac{1}{3}}+m \sqrt{2} \sqrt{\frac{2}{3}}}=\frac{m \sqrt{3}}{1+\frac{2 m}{2}}$

$$
=\frac{m}{1+2 m} A O_{1}
$$

$\mathrm{Or} \frac{A o_{1}}{A O_{1}}=\frac{m}{1+2 m}=\frac{1}{1+1+\frac{1}{m}}$
48. If we call the distances 1,1 , and m, at which each of the 24 faces of the three-faced octahedron if produced would cut three of the semi-cubical axes at right angles to each other, indices; then the ratio of $\frac{A o_{1}}{A O_{1}}=$ unity divided by the sum of the reciprocals of the indices. Calling R this ratio, then when $m=2$ $R=\frac{2}{5} ; m=3 R=\frac{3}{7} ; m=\frac{3}{2} R=\frac{3}{8} ; m=4 R=\frac{4}{9} ; m=\frac{7}{4} R=\frac{7}{18}$; $m=\frac{5}{4} R=\frac{5}{14}$; and $m=\frac{65}{64} R=\frac{65}{154}$.
49. When $m=1$, the three-faced octahedron becomes tlio octahedron, and its three indices are 1,1 , and 1 , and $R=\frac{1}{3}$.

Taking 11 m as the symbol for the three-faced octahedron, 111 must be taken as the symbol for the octahedron.
50. For the octahedron Nanmann's symbol is O; Miller's, 111 ; Brooke, Levy, and Des Cloizeau's a^{1}.
51. When the third index becomes infinite, or, in other words, the face cuts two axes and is parallel to the third, then $m=\frac{1}{0}=\infty$, and $\frac{1}{m}=0$; and the three-faced octahedron is then the rhombic dodecahedron.
52. The three indices of the rhombic dodecahedron are, therefore, 1,1 , and ∞; and 11∞ becomes its symbol. Naumann's symbol is $\infty^{\prime} 0$; Miller's, 110 ; Brooke's, \&c., l^{1}.

To inscribe the four-faced Cube in the Oube.

53. (Fig. 37, Plate IV.) Describe the square $A C_{1} D_{1} C_{2}$ equal one-fourth of the square $O_{1} O_{4} O_{8} O_{5}$ (fig. 27, Plate IV.), this being a face of the cube in which the four-faced cube is to bo inscribed. Join $A D_{1}$ (fig. 37, Plate IV.). Produce $D_{1} O_{1}$ to O_{1}, and $C_{2} A$ to D_{5}. Make $C_{1} O_{1}$ and $A D_{5}=A D_{1}$. Join $O_{1} D_{5}$.

Produce $A C_{1}$ to M, and make $A M=m, m$ being any whole number or fraction greater than unity. The particnlar value of m will determine the particular species of the four-faced
cube, there being a distinct species for every value which can be assigned to m.

Join $C_{2} M$ cutting $A D_{1}$ in d_{1}. Join $C_{1} d_{1}, C_{1} d_{2}$.
In $A D_{5}$ take $A d_{5}=A d_{1}$. Draw $d_{5} a_{1}$ parallel to $A M I$ and cutting $A O_{1}$ in o_{1}.

Join $C_{1} 0_{1}$.
Then (fig. 37, Plate IV.) represents the same lines and letters seen in perspective in (fig. 9, Plate II.), or the square $A C_{1} D_{1} C_{2}$ represents one-fourth of the section of the circumscribing cube through the centres of opposite edges of the cube, and the parallelogram $C_{1} O_{1} D_{5} A$ one-fourth of that through two opposite edges and two diagonals of opposite faces.

Taking, therefore, eight points, $O_{1^{\prime}}, O_{\varepsilon} o_{2}, O_{2} o_{3}$, \&c., $O_{8} o_{s}$, in the octahedral axes of the circumscribing cube (fig. 9, Plate II.), each equal to $O_{1} 0_{1}$ (fig. 37, Plate IV.) in the solid, or marking them in the perspective by proportional compasses as described in $\S 36$. Join together $C_{1} o_{1}, C_{1} o_{2}, C_{2} o_{1}, C_{2} o_{5}, \& c$. ; and also $o_{1} 0_{4}, o_{1} 0_{5}, \& c$., as in fig. 9 , and we have the four-faced cube inscribed in the cube. Since in fig. $9, o_{1} d_{1}=o_{4} d_{4}$, and $D_{1} d_{1}$ represents $D_{1} d_{1}$, fig. 37, it is evident that every edge of the four-faced cube such as $o_{1} 0_{4}$ is bisected by a rhombic axis $D_{1} d_{1}$ in the point d_{1}.
54. If (fig. 34, Plate IV.) we draw $o_{4} d_{1}=o_{1} d_{5}$ (fig. 37), produce $o_{4} d_{1}$ to o_{1}, and make $d_{1} o_{1}=d_{1} o_{4}$; on $o_{4} o_{1}$ as base describe an isosceles triangle $C_{1} o_{4} o_{1}$, having its equal sides $C_{1} o_{4}, C_{1} o_{1}$ each $=C_{1} 0_{1}$ (fig. 37).

Then $C_{1} o_{4} o_{1}$ will represent on a plane surface a face of the four-faced cube; and a net of 24 of these faces all equal to each other when folded up will form a solid four-faced cube, which can be accurately inscribed in a skeleton cube whose edges are all equal to $O_{1} O_{4}$ (fig. 9, Plate II.).
55. If we compare fig. 37 , Plate IV., with fig. 9, Plate II., we see that $o_{1} d_{5}$ is parallel to ΛC_{1}, and $O_{2} d_{1}$ cuts ΛC_{1} produced in $M, A M$ being taken equal to m. Hence, by similarity and symmetry of construction, we see that every face of the fourfaced cube cuts one of the three cubical axes at a distance $=$ $A O$, ancther at m times $A C$, and is parallel to the third. Hence, taking $A C=1$, then $1 \mathrm{~m} \infty$ may be taken as the symbol for the four-faced cube.

Unity, m, and ∞ being the three indices of this form.
56. If m be represented as a fraction by $\frac{h}{k}$, then $\infty 0 m$ is Naumann's symbol, $h \nless o$ Miller's, $b^{\frac{h}{k}}$ Brooke, Levy, and Des Cloizeau's.
57. $m=\frac{6}{5}$ occurs in crystals of pyrite; $m=\frac{5}{4}$ in perowskite; $m=\frac{4}{3}$ in diamond and perowskite; $m=\frac{3}{2}$ in argentite, blende,
diamond, pyrite, and perowskite; $n=2$ in argentite, copper, cobaltine, cuprite, fluor, gold, gersdorfitte, garnet, magnetite, pyrite, percylite, salt, and silver; $m=\frac{7}{3}$ in cubane; $m=\frac{5}{2}$ in copper and fluor ; $m=3$ in amalgam, fahlerz, fluor, hauerite, and pyrite; $m=4$ in cobaltine and silver; $m=5$ in cuprite; $m=40$ in fluor.
58. When $m=1$, the symbol for the four-faced cube becomes 11∞, or the four-faced cube becomes the rhombic dodecahedron. When $m=\infty$, the symbol becomes $1 \infty \infty$, which is that of the cube, each of whose faces cuts one of three cubical axes and is parallel to that of the other two.
59. Hence fig. 9, Plate 1I., shows that the four-faced cube is a form of an infinite number of species, the points such as o_{1}, o_{2}, \&c., in the octahedral axes lying between $\frac{1}{2} A O_{1}$ when it is the rhombic dodecahedron, and O_{1} when it becomes the cube.

Constructing fig. 14, the skeleton cube, in wires, and the octahedron as shown with the lines passing through o and d in elastic strings, as before; then by pulling symmetrically all the points $o_{1}, o_{2}, \& c$., from $A o_{1}=\frac{1}{2} A O_{1}$ up to O_{1}, all the forms of the four-faced cube, though infinite in number, will be represented to the eye in a finite space of time.

To obtain the Ratios of the Octahedral and Rhombic Axes of the four-faced Cube to those of the circumscribing Cube.
60. (Fig. 37, Plate IV.) $\tan M C_{2} A=\frac{A M}{A O_{2}}=\frac{m}{1}$ augle $D_{1} A C_{2}=45^{\circ}$ by construction.

Hence in triangle $A d_{1} C_{2}, d_{1} C_{2} A+C_{2} d_{1} A+45^{\circ}=180^{\circ}$.

$$
C_{2} d_{1} A=135^{\circ}-d_{1} C_{2} A .
$$

Therefore

$$
\sin C_{2} d_{1} A=\sin \left(135^{\circ}-d_{1} C_{2} A\right) .
$$

$$
=\cos \left(90^{\circ}-135^{\circ}+d_{1} C_{2} A\right)=\cos \left(d_{1} C_{2} A-45^{\circ}\right) ;
$$

But in triangle $A d_{1} C_{2}, \frac{A d_{1}}{A C_{2}}=\frac{\sin d_{1} C_{2} A}{\sin C_{2} d_{1} A}=\frac{\sin d_{1} C_{2} A}{\cos \left(d_{1} O_{2} A-45^{\circ}\right)}$
$\sin d_{1} C_{2}^{2} A$
$=\frac{}{\cos d_{1} C_{2} A \cos 45^{\circ}+\sin d_{1} C_{2} A \sin 45^{\circ}}$

$$
=\frac{\tan d_{1} C_{2} A}{\sqrt{\frac{1}{2}}\left(1+\tan d_{1} C_{2} A\right)}=\frac{m \sqrt{2}}{1+n}
$$

But $A C_{2}=1$ and $A D_{1}=\sqrt{2}$.
Therefore $A d_{1}=\frac{m}{1+m} A D_{1}$.
But $A d_{5}=A d_{1}$ and $A D_{5}=A D_{1}$ and $o_{1} \lambda_{5}$ is parallel to $O_{1} D_{5}$.
Therefore $\frac{A o_{1}}{A O_{1}}=\frac{A d_{5}}{A D_{5}}=\frac{m}{1+m}$ or $A o_{1}=\frac{m}{1+m} A O_{1}$.

Hence we see that the ratios of the octahedral and rhombic axes of the inscribed four-faced cube to those of the circumscribing cube are each equal to $\frac{m}{1+m}$. Calling this ratio R, and putting it under the form $R=\frac{1}{1+\frac{1}{m}}$; we see that for the cube $m=\infty, R=1$; and for the rhombic dodecahedron $m=1$, and therefore $R=\frac{1}{2}$.

Hence for the four-faced cube R varies from 1 to $\frac{1}{2}$.
When $m=\frac{6}{5}, R=\frac{6}{11} ; m=\frac{5}{4}, R=\frac{5}{9} ; m=\frac{4}{3}, R=\frac{4}{7}$;
$m=\frac{3}{2}, R=\frac{3}{5} ; m=2, R=\frac{2}{3} ; m=\frac{7}{3}, R=\frac{7}{10} ;$
$m=\frac{5}{2}, R=\frac{5}{7} ; m=3, R=\frac{3}{4} ; m=4, R=\frac{4}{5}$; $m=5, R=\frac{5}{6} ; m=40, R=\frac{40}{41}$.
61. To inscribe the twenty-four faced trapezohedron in the cube.
(Fig. 31, Plate IV.) Describe the square $A C_{1} D_{1} C_{2}=$ one-fourth the face of the cube $O_{1} O_{5} O_{8} O_{4}$ (fig. 27). Join $A D_{1}$. Produce $D_{1} C_{1}$ to O_{1}, and $C_{2} A$ to D_{5}. Make $C_{1} O_{1}$ and $A D_{5}$ each $=A D_{1}$. Join $O_{1} D_{5}$. Produce $A O_{1}$ to M_{1}, and take $A M=m, A C_{1}$ being 1 , and m any whole number or fraction greater than unity. m determines the particular species of the twenty-four-faced trapezohedron.

Join $C_{2} M$ meeting $A D_{1}$ in d_{1}. In $A D_{5}$ take $A d_{5}=A d_{1}$.
Join $d_{5} M$ cutting $A O_{1}$ in o_{1}. Join $C_{1} o_{1}$ and $C_{1} d_{1}$.
Then in (fig. 11, Plate II.), describe fig. 27, Plate IV., and take the eight points, $o_{1}, o_{2}, \& c ., o_{8}$, in the octahedral axes so that $\frac{A o_{1}}{A O_{1}}=\frac{A o_{2}}{A O_{2}}$ (fig. 11), $=\frac{A o_{1}}{A O_{1}}$ (fig. 31, Plate IV.). And the twelve points $d_{1}, d_{2}, \& c ., d_{12}$, in fig. 11, Plate II., so that $\frac{A d_{1}}{A D_{1}}=\frac{A d_{2}}{A D_{2}}=\frac{A d_{1}}{A D_{1}}$ (fig. 31, Plate IV.), as described in $\S 36$.

Then joining the points C, d, and o, as shown in (fig. 11, Plate II.) the twenty-four-faced trapezohedron will be inscribed in the cube.
62. If (fig. 39, Plate IV.) we describe a triangle having one of its sides $C_{1} o_{1}=C_{1} o_{1}$ (fig. 31), another side $C_{1} d_{1}=C_{1} d_{1}$ (fig. 31), and its third side $o_{1} d_{1}=o_{1} d_{5}$ (fig. 31);

Then, on the other side of the base $C_{1} 0_{1}$ (fig. 39), describe the triangle $C_{1} d_{2} o_{1}$ similar and equal to the triangle $C_{1} d_{1} o_{1}$.
$C_{1} d_{1} \rho_{1} d_{2}$ will represent on a plane surface a face of the twenty-four-faced trapezohedron, and 24 of these faces, formed into a net and folded together will make a solid twenty-four-faced trapezohedron, which can be inscribed witl l_{1} vol. II,
a skeleton cube whose face $=O_{1} O_{5} O_{8} O_{4}$, fig. 27, in the position shown in (fig. 11, Plate II.).
63. Since (fig. 31) $C_{2} d_{1}$ cuts $A M$ in M, and $d_{5} o_{1}$ cuts $A C_{1}$ also in M, and comparing this with fig. 11, Plate II., we see that every face of the twenty-four-faced trapezohedron cuts one cubical axis at a distance equal $A C_{1}$, and two other cubical axes at m times this distance.

Taking $A C_{1}$ as unity, we see that the three indices of the twenty-four-faced trapezohedron are $1, m$, and m. Its symbol, therefore, is $1, m, m$.

Representing m as a fraction by $\frac{h}{k}$, Naumann's symbol is $m O m$; Miller's h, k, k; Brooke, Levy, and Des Cloizeau's $a^{\frac{h}{k}}$.
64. $m=\frac{4}{3}$ occurs in crystals of galena and garnet; $m=\frac{3}{2}$ in argentite, gold, and tennantite ; $m=2$ in amalgam, argentite, analcime, boracite, cuprite, dufrenoysite, eulytine, fahlerz, franklinite, fluor, gold, galena, garnet, leucite, pyrite, pyrochlore, sal-ammoniac, sodalite, smaltine, and tennantite; $m=\frac{9}{4}$ in perowskite; $m=\frac{8}{3}$ in fluor ; $m=3$ in blende, copper, fahlerz, fluor, gold, galena, magnetite, pyrite, perowskite, pyrochlore, and spinelle ; $m=4$ in sal-ammoniac and kerate ; $m=5$ in galena; $m=6$ in magnetite ; $m=10$ in magnetite ; $m=12$ in blende ; $m=16$ in galena and magnetite; $m=40$ in pharmacosiderite.
65. To find the ratios of the rhombohedral and octahedral axes of the twenty-four-faced trapezohedron to those of the circumscribing cube.
The right-hand side of the (fig. 31, Plate IV.) being the same by construction as that of (fig. 37, Plate IV.) for the four-faced cube.
$A d_{1}=\frac{1}{1+\frac{1}{m}} A D_{1}$, or $\frac{A d_{1}}{A D_{1}}=\frac{m}{m+1}$ as in $\S 60$.
But fig. 31, $A d_{5}=A d_{1}=\frac{m}{m+1} \sqrt{2}$.
$\tan A d_{5} M=\frac{A M}{A d_{5}}=m \frac{m+1}{m \sqrt{2}}=\frac{m+1}{\sqrt{2}}$
but $\sin O_{1} A d_{5}=\frac{O_{1} D_{5}}{A O_{1}}=\frac{1}{\sqrt{3}}$ and $\cos O_{1} A d_{5}=\frac{A D_{5}}{A O_{1}}=\frac{\sqrt{2}}{\sqrt{3}}$
also $\sin A o_{1} d_{5}=\sin \left\{180^{\circ}-\left(A d_{5} M+O_{1} A d_{5}\right)\right\}$.

$$
\begin{aligned}
& =\sin \left(A d_{5} M+O_{1} A d_{5}\right) \\
& =\sin A d_{5} M \cos O_{1} A d_{5}+\cos A d_{5} M \sin O_{1} A d_{5}
\end{aligned}
$$

But in triangle $A o_{1} d_{5} \quad \frac{A o_{1}}{A d_{5}}=\frac{\sin A d_{5} M}{\sin A o_{1} d_{5}}$
Therefore $A o_{1}=\frac{\sin A d_{5} M}{\sin A o_{1} d_{5}} A d_{5}$.

$$
\begin{aligned}
& =\frac{\sin A d_{5} M \cdot m \sqrt{2}}{(m+1)\left(\sin A d_{5} M \cos O_{1} A d_{5}+\cos A d_{5} M \sin O_{1} A d_{5}\right)} \\
& =\frac{m \sqrt{2}}{(m+1)\left(\cos O_{1} A d_{5}+\cot A d_{5} M \sin O_{1} A d_{5}\right)} \\
& =\frac{m \sqrt{2}}{(m+1)\left\{\frac{\sqrt{2}}{\sqrt{3}}+\frac{\sqrt{2}}{m+1} \cdot \frac{1}{\sqrt{3}}\right\}}=\frac{m \sqrt{3}}{m+1+1} \\
& =\frac{1}{1+\frac{1}{m}+\frac{1}{m}} A O_{1} .
\end{aligned}
$$

Hence the ratio of the rhombic axes of the twenty-fourfaced trapezohedron to those of circumscribing cube, or $\frac{A d_{1}}{A D_{1}}=\frac{1}{1+\frac{1}{m}}$; and the ratio of the octahedral axes of the twenty-four faced trapezohedron, or $\frac{A \theta_{1}}{A O_{1}}=\frac{1}{1+\frac{1}{m}+\frac{1}{m}}$
66. Representing $\frac{A d_{1}}{A D_{1}}$ as R_{1}, and $\frac{A o_{1}}{A O_{1}}$ as R_{2}.
$R_{1}=$ unity divided by the sum of the reciprocals of the first two indices taken in order of magnitude, and
$R_{2}=$ unity divided by the sum of the reciprocals of the three indices.

$$
\begin{aligned}
& \text { When } m=\frac{4}{3} \quad R_{1}=\frac{4}{7} \text { and } R_{2}=\frac{2}{5} \\
& m=\frac{3}{2} \quad R_{1}=\frac{3}{5} \quad R_{2}=\frac{3}{7} \\
& m=2 \quad R_{1}=\frac{2}{3} \quad R_{2}=\frac{1}{2} \\
& \begin{array}{lll}
m=\frac{9}{4} & R_{1}=\frac{9}{13} & R_{2}=\frac{9}{17}
\end{array} \\
& m=\frac{8}{3} \quad R_{1}=\frac{8}{11} \quad R_{2}=\frac{4}{7} \\
& m=3 \quad R_{1}=\frac{3}{4} \quad R_{2}=\frac{3}{5} \\
& m=4 \quad R_{1}=\frac{4}{6} \quad R_{2}=\frac{2}{3} \\
& m=5 \quad R_{1}=\frac{5}{6} \quad R_{2}=\frac{5}{7} \\
& m=10 R_{1}=\frac{10}{11} \quad R_{2}=\frac{5}{6} \\
& m=12 R_{1}=\frac{12}{13} \quad R_{2}=\frac{6}{7} \\
& m=16 R_{1}=\frac{16}{17} \quad R_{2}^{2}=\frac{8}{9} \\
& m=40 R_{1}=\frac{40}{41} \quad R_{2}=\frac{20}{21}
\end{aligned}
$$

67. When $m=1, R_{1}=\frac{1}{2}$, and $R_{2}=\frac{1}{3}$, and the twenty-four. faced trapezohedron becomes the octahedron.

$$
2 \text { F2 }
$$

When $m=\infty$ and $\frac{1}{m}=0, R_{1}=1$ and $R_{2}=1$, and the twenty-four-faced trapezohedron becomes the cube.

Hence, referring to (fig. 11, Plate II.) we see that the twenty-four-faced trapezohedron is a variable form of an infinite number of species, varying from the octahedron as one limit to the cube as the other.

If we represent this passage as in the instances of the threefaced octahedron, §41, and four-faced cube, § 59, we must raise the eight points $o_{1}, o_{2}, \& c$. ., o_{8}, from o_{1} equal $\frac{1}{3} A O_{1}$ in the octahedron (fig. 14) to O_{1}, fig. 8; at the same time raising the points $d_{1}, d_{2}, \& c ., d_{12}$ along the lines $A D_{1}, A D_{2}, \& c$., from d_{1}, $d_{2}, \& c .\left(\right.$ Gg. 14), equal one-half $A D_{1}$, to the point $D_{1}, D_{2}, \& c$. (fig. 8); taking care that the point d shall have such a relation to o that two adjacent triangles on each side of $C o$ are in the same plane.

68. To inscribe the six-faced octahedron in the cube.

(Fig. 35, Plate IV.) Describe the square $A C_{1} D_{1} C_{2}$ equal one-fourth of the square $O_{1} O_{4} O_{8} O_{5}$ (fig. 27). Join $A D_{1}$. Produce $D_{1} C_{1}$ to O_{1}, and $C_{2} A$ to D_{5}, making $C_{1} O_{1}$ and $A D_{5}$ equal $A D_{1}$. Join $O_{1} D_{5}$. Produce $A O_{1}$ to M and N. Taking $A C_{1}=1$, make $A M=M$ and $A N=n$; m being any whole number or fraction greater than unity, and n any whole number or fraction greater than m.

Join $C_{2} M$, cutting $A D_{1}$ in d_{1}. Take $A D_{5}=A d_{1}$. Join $d_{5} N$, cutting $A O_{1}$ in o_{1}. Join $C_{1} o_{1}$.

Then, in fig. 27, take 12 points, $d_{1}, d_{2}, \& c ., d_{12}$, in $A D_{1}$, $A D_{2}, \& c ., A D_{12}$, so that $\frac{A d_{1}}{A D_{1}}, \frac{A d_{2}}{A D_{2}}, \& c ., \frac{A d_{12}}{A D_{12}}$ are each equal to $\frac{A d_{1}}{A D_{1}}$, fig. 35 , which can be easily done with proportional compasses.

Also, in fig. 27, take eight points, $o_{1}, o_{2}, \& c ., o_{8}$, in $A O_{1}$, $A O_{2}, \& c ., A O_{8}$, so that $\frac{A o_{1}}{A O_{1}}, \frac{A o_{2}}{A O_{2}}, \& c ., \frac{A o_{8}}{A O_{8}}=\frac{A o_{1}}{A O_{8}}$, fig. 35.

Join the points C, d, and o as in (fig. 10, Plate II.), and the six-faced octahedron inscribed in the cube will be shown in perspective. In a model showing the solid six-faced octahedron inscribed in a skeleton cube, each of the lines $O_{1} o_{1}, O_{2} o_{2}, \& c ., O_{8} o_{8}$, will be equal $O_{1} o_{1}$ fig. 35 , and each of the lines $D_{1} d_{1}, D_{2} d_{2}$, \&c., $D_{12} d_{12}$, will be equal $D_{1} d_{1}$, fig. 35 .
69. Fig. 36, Plate IV. Draw a triangle, $C_{1} o_{1} d_{2}$, such that $C_{1} o_{1}$, fg. $36,=C_{1}$ o, fig. 35 ; $C_{1} d_{2}$, fig. $36,=C_{1} d_{1}$, fig. 35 ; and $o_{1} d_{2}$, fig. 36, $=o_{1} d_{5}$, fig. 35.

Then $C_{1} o_{1} d_{2}$ (fig. 36) is a face on a plane surface of the sixfaced octahedron which can be inscribed in a cube, each of whose faces are equal $O_{1} O_{4} O_{8} O_{5}$, fig. 27.

Forty-eight triangles, similar and equal to $C_{1} o_{1} d_{2}$, arranged as a net and cut out of cardboard, will fold up into a solid model of the six-faced octahedron.
70. Each face of the six-faced octahedron, if produced, cuts one axis of the cube at the distance $=1$, another at the distance $=m$, and the third at a distance n from the centre of the cube.

The three quantities, $1, m$, and n are termed the three indices of the six-faced octahedron.

Its symbol, therefore, is $1, m, n$; Naumann's symbol is $n O m$.
If the three fractions $1, \frac{1}{m}, \frac{1}{n}$ be brought to a common denominator, and the three numerators divided, if they possess any common factor, by that factor, be represented by h, k, l, these being whole numbers, then h, k, l is Miller's symbol, and $b^{\frac{1}{h}} b^{\frac{1}{k}} b^{\frac{1}{2}}$ is that of Brooke, Levy, and Des Cloizeau.
71. The form 1, $\frac{64}{63}, 64$ occurs in garnet ; $1, \frac{5}{4}, \frac{5}{3}$ in pyrite and gold ; 1, $\frac{4}{3}, 2$ in linneite ; $1, \frac{4}{3}, 4$ in garnet $; 1, \frac{15}{15}, \frac{15}{7}$ in linneite; 1, $\frac{3}{2}, 3$ in amalgam, cobaltine, cuprite, diamond, fahlerz, garnet, hauerite, magnetite, and pyrite; $1, \frac{8}{5}, 8$ in pyrite; $1, \frac{5}{3}, 5$ in boracite and pyrite ; 1, 5,10 in pyrite ; 1, 2 , 4 in fluor, gold, and pyrite; $1,2,10$ in pyrite ; $1, \frac{11}{8}, \frac{11}{3}$ in fluor ; 1, $\frac{16}{7}, 4$ in fluor ; $1, \frac{7}{3}, 7$ in fluor ; $1,3, \frac{21}{5}$ in magnetite; 1, 4, 8 in galena.
72. To find the ratios of the rhombohedral and octahedral axes of the six-faced octahedron to those of the circumscribing cube.
In fig. 35, Plate IV., the sides of the square $A C_{1} D_{1} C_{2}$ are by construction equal to unity. Hence $A D_{1}=\sqrt{2}$, and angle $D_{1} A C_{2}=45^{\circ} 0^{\prime}$. Also $A M=m$ by construction. Let angle $A C_{2} d_{1}=a$. Then $A d_{1} C_{2}=180^{\circ}-(a+45)$.

Then $\cos a=\frac{A O_{2}}{m}=\frac{1}{m}$,
and in triangle $A d_{1} C_{2}$,

$$
\begin{aligned}
& \frac{A d_{1}}{A C_{2}}=\frac{\sin a}{\sin \{180-(a+45)\}}=\frac{\sin a}{\sin (a+45)} \\
& A d_{1}=\frac{1}{\sin a \cos 45+\cos a \sin 45}=\frac{1}{\sqrt{\frac{1}{2}}+\sqrt{\frac{1}{2}} \cos a} \\
& =\frac{\sqrt{2}}{1+\frac{1}{m}}=\frac{1}{1+\frac{1}{m}} A D_{1} .
\end{aligned}
$$

Therefore $\frac{A d_{1}}{A D_{1}}=\frac{1}{1+\frac{1}{m}}$.
Hence the ratio of each rhombic axis of the six-faced octahedron to that of the circumscribing cube is $\frac{1}{1+\frac{1}{m}}$, or of unity divided by the sum of the reciprocals of the two smaller indices of the six-faced octahedron.
73. Again in (fig. 35, Plate IV.), in the parallelogram $C_{1} O_{1} D_{5} A_{1}, C_{1} A=O_{1} D_{5}=1$, and $C_{1} O_{1}=A D_{5}=\sqrt{2}$; also $A d_{5}=A d_{1}$ $=\frac{\sqrt{2}}{1+\frac{1}{m}}$

Let $\gamma=O_{1} A D_{5}$ and $\beta=A d_{5} N$. Then $A o_{1} \dot{d}_{5}=180^{\circ}-(\beta+\gamma)$.
Bat $A O_{1}{ }^{2}=O_{1} D_{5}^{2}+A D_{5}^{2}=1+2=3$.
and $A O_{2}=\sqrt{3}$.
Also $\sin \gamma=\frac{O_{1} D_{5}}{A O_{1}}=\frac{1}{\sqrt{3}}$ and $\cos \gamma=\frac{A D_{5}}{A O_{1}}=\frac{\sqrt{2}}{\sqrt{3}}$
In triangle $N A d_{5} \quad \cot \beta=\frac{A d_{5}}{A N}=\frac{A d_{5}}{n}$
Also in triangle $A o_{1} d_{5}$.

$$
\begin{aligned}
\frac{A o_{1}}{A d_{5}} & =\frac{\sin \beta}{\sin \{180-(\beta+\gamma)\}}=\frac{\sin \beta}{\sin (\beta+\gamma)} \\
& =\frac{\sin \beta}{\sin \beta \cos \gamma+\cos \beta \sin \gamma}=\frac{1}{\cos \gamma+\cot \beta \sin \gamma}
\end{aligned}
$$

Hence $A o_{2}=\frac{A d_{5}}{\frac{\sqrt{2}}{\sqrt{3}}+\frac{A d_{5}}{n} \frac{1}{\sqrt{3}}}=\frac{\sqrt{3}}{\frac{\sqrt{2}}{A d_{5}}+\frac{1}{n}}$
$=\frac{\sqrt{3}}{\left(\frac{1+\frac{1}{m}}{\sqrt{2}}\right) \sqrt{2}+\frac{1}{n}}=\frac{A O_{1}}{1+\frac{1}{m}+\frac{1}{n}}$
And $\frac{A o_{1}}{A O_{1}}=\frac{1}{1+\frac{1}{m}+\frac{1}{n}}$
Hence ratio of the octahedral axis of six-faced octahedron is to that of the circumscribing cabe as $\frac{1}{1+\frac{1}{m}+\frac{1}{n}}$, or unity divided by the sum of the reciprocals of its three parameters.
74. Let $R_{1}=\frac{A o}{A O}$, and $R_{2}=\frac{A d}{A D}$

75. Referring now to (Plate II., fig. 10), we may observe that the six-faced octahedron is the form from which all the others represented on that plate are derived.
76. When the indices m and n are equal, and both greater than unity, the six-faced octahedron (fig. 10) becomes the twenty-four-faced trapezohedron, fig. 11, in which case two adjacent faces over the edge Co become in the same plane, and the 48 faces of the six-faced octahedron are reduced to the 24 faces of the twenty-four-faced trapezohedron.
77. When the index n becomes infinite, and m is some number or fraction greater than unity, the six-faced octahedron becomes the four-faced cube (fig. 9), and two adjacent planes over the edge $C d$ become in the same plane, and so the 48 faces of the six-faced octahedron are reduced to the 24 faces of the four-faced cube.
78. When the index m becomes unity, and n is some number or fraction greater than unity, the six-faced octahedron becomes the three-faced octahedron (fig. 13), and two adjacent faces over the edge od become in the same plane, and so the 48 faces of the six-faced octahedron are reduced to the 24 faces of the three-faced cube.
79. When the two indices m and n are both equal to unity, the six-faced octahedron becomes theoctahedron (fig. 14), and the six faces round each octahedral axis become in the same plane, and the 48 faces of the six-faced octahedron are reduced to the eight faces of the octahedron.
80. When the index $m=$ unity, and n becomes infinitr, the six-faced octahedron becomes the rhombic dodecahedron (fig. 12), and the four faces surrounding the rhombic axes are
in the same plane, and the 48 faces of the six-faced octahedron are reduced to the twelve faces of the rhombic dodecahedron.
81. When both the indices m and n become infinite, the six-faced octahedron becomes the cube fig. 8 , and the eight faces surrounding the cubical axes are in the same plane, and the 48 faces of the six-faced octaledron are reduced to six faces of the cube.
82. By giving the necessary values to m and n, the formulæ belonging to any of the forms in Plate II. may be derived from those calculated for the six-faced octahedron. If fig. 10 be constructed, the outlines of the circumscribing cube in wire, and the 48 triangles Cdo in elastic strings fastened to the skeleton cube at C, and strings tying together the lines $C d C$ and $o d o$ at d, and the four strings $C d$ meeting in o, and these be made to pass over pulleys at D and O; then by a proper adjustment of the lengths of $O o$ and $D d$, taking care that the eight lines $O o$ and the twelve lines $D d$ are the same in length for each particular form,-the 48 triangles of the elastic six-faced octahedron may be made to assume the shape of any holohedral form of the cubical system.
83. Whenever faces parallel to different forms of crystals occur in the same crystal, such as is shown in a crystal of native copper (fig. 29*, Plate IV.*), these faces are always parallel to those of their respective forms when inscribed in a cube, every other form having the same invariable position with respect to the cube, as shown in (Plate II.) Faces parallel to those of the cube are marked C_{1}, C_{2}, C_{3}; octahedron $o_{1}, o_{4}, o_{8}, o_{5}$; rhombic dodecahedron d_{1}, d_{2}, d_{5}, \&c., and $H_{1}, H_{2}, \& c$., those of a four-faced cube are all shown on the same crystal.
84. It will also be seen by reference to (fig. 29), that the intersections of the faces of the crystal or the edges between $C_{1}, H_{6}, d_{1}, H_{5}, C_{2}, H_{8}, d_{9}$, and H_{9} are lines parallel to one another, as also are those of $C_{3}, H_{1}, d_{5}, H_{5}, C_{2}, H_{7}, d_{8}, H_{12}$. Faces whose intersections are thus parallel are said to belong to the same zone, for a reason to be shown presently.
85. (Fig. 30*, Plate IV.*) Let the three planes CDGH, $D E K H$, and $E F L K$ be perpendicular to the plane $G H K L$, intersecting it in the lines $G H, H K$, and $K L$. From A, a point in the plane $G H K L$, draw $A M$ perpendicular to $G H, A N$ to $H K$, and $A O$ to $K L$. Through A draw $A B$ perpendicular to the plane GHKL. Then it may be easily shown by the Eleventh Book of Euclid, that $C G, D H, E K$, and $F L L$ are parallel to $A B$; also that $A M$ is perpendicular to the plane $O D H G, A N$ to $D E K H$, and $A O$ to $E K L F$. Also $D H$ perpendicular to $G H$ and $H K$, and $E K$ perpendicular to $K H$ and $K L$.
$A M, A N$, and $A O$ are called normals from the point O to the plane to which they are respectively perpendicular.

Now the inclination of the plane $O D H G$ to the plane $D H E K$ over their intersecting edge $D H$ is measured by the angle $M H N, M H$ and $H N$ being drawn through the point H, perpendicular in each of the planes to their common intersection $D H$. Similarly the angle $N K O$ measures the inclination of the plane $D E K H$ to the plane EKLF over the edge of their intersection $E K$.

In every quadrilateral lineal figure drawn in the same plane the four angles of the figure are always equal to four right angles, and in the plane $G H K L$ the angles $A M H, A N H$, $A N K$, and $A O K$ are all right angles. Hence the angle $M H N=180^{\circ}-M A N$, and the angle $N K O=180^{\circ}-N A O$.

In other words, the normals drawn through a point perpendicular to two intersecting planes, make with each other an angle which is the supplement to that which measures the inclination of these planes to each other over their intersecting edge.
86. The power of representing the combination of faces of crystals witheachother such as (fig. 29*, Plate IV.*) is necessarily limited to those of comparatively few faces. But, taking advantage of the relationship of the inclination of faces of crystals measured over their edges of intersection to that of their normals drawn from a certain point within the crystal, Professor Neumann, of Königsberg, devised a system by which the relationship of all the forms of any number of crystals might be graphically represented at one view.

For instance, to represent the relationship of all the forms of the cubical system to each other, we suppose the cube (fig. 27, Plate IV.) to be inscribed in a sphere whose centre corresponds with A, the centre of the cube. From this centre A, normals are drawn perpendicular to every face of the cube, and to those of every form which can be inscribed in it.

The points where these normals cut the surface of the circumscribing sphere are called the poles of their respective faces, and the arc of the great circle between any two poles is the supplement of that arc which measures the inclination of their respective faces over the straight edge of their intersection.
87. Referring to (fig. 27, Plate IV.), we see that $A C_{1}$ and $A C_{2}$, the normals of opposite faces of the cube, are in the same straight line, as also are $A C_{2}$ and $A C_{4}, A O_{3}$ and $A C_{5}$; also that the three axes $C_{1} C_{6}, C_{2} C_{4}$, and $C_{3} C_{5}$ are perpendicular to each other. The six equal lines $A C_{1}, A C_{2}, \& c, A C_{6}$ are equal radii of a sphere, which can be inscribed in the cube, having A for its centre and touching the six faces of the cube in their poles, $C_{1}, C_{2}, \& c ., C_{6}$.

Upon this sphere we may project the poles of all the faces of the different forms (fig. 9 to fig. 14, Plate II.), which can be inscribed in the cube.

Let (fig. 31* and fig. 32*, Plate IV.*) represent the projections of two hemispheres of this sphere upon the plane of the paper.

Let $C_{1} C_{6}$ and $C_{5} C_{3}$ (fig. 31*) be two diameters intersecting at right angles in C_{2}. Also $C_{1} C_{6}$ and $O_{5} C_{4}$ (fig. $32 *$) be two diameters intersecting at right angles in C_{4}.

Then $C_{1}, C_{2}, C_{3}, \& c ., C_{6}$, represent the poles of the six faces of the cube on the sphere of projection. Also the eight equilateral spherical triangles $C_{1} C_{2} C_{3}, C_{1} C_{5} C_{2}, C_{5} C_{2} C_{6}$ \&c., divide the sphere of projection into eight equal octants.
88. Bisect each of the twelve arcs $C_{1} C_{2}, C_{1} C_{3}, C_{1} C_{4}, C_{1} C_{5}$, \&c., by the points D_{1}, D_{2}, D_{3}, and D_{12}; these twelve points will be the twelve poles of the rhombic dodecahedron on the sphere of projection (figs. 31* and $32 *$, Plate IV.*), or the twelve points where the rhombic axes $A D_{1}, A D_{2}, A D_{3}, A D_{4}$, \&c., of fig. 27 cut the surface of the sphere of projection inscribed in the cube.
89. Join $C_{1} D_{5}, \quad C_{2} D_{2}, \quad C_{3} D_{1}$ by arcs of great circles meeting in O_{1}; this will divide the octant of the sphere $C_{1} C_{2} C_{3}$ into six equal and similar spherical triangles. Let this be done to each of the other octants. Then (fig. 31* and fig. 32*, Plate IV.*) the eight points $O_{1}, O_{2}, \& c ., O_{8}$, will represent the eight poles of the octahedron on the sphere of projection.

The sphere of projection is thus divided into 48 equal and similar but right and left-handed spherical triangles, indicated by the triangles $C O D$, with different indices to the letters.
90. Any great circle of the sphere of projection is called a zone circle, and the poles of all faces which are in that great circle are said to lie in the same zone, and their intersections will be parallel to each other (see § 84 and 85).
91. We see in (fig. 9, Plate II.) that the normal to any face such as $C_{1} o_{1} o_{9}$, must, by the symmetry of construction of the four-faced cabe, pass through some point in the line $C_{1} d_{2}$. Hence in the sphere of projection (figs. 31* and 32*, Plate IV.*), the 24 poles of any four-faced cube will lie in each of the 24 arcs $C D$.
92. The normals to any face of the twenty-four-faced trapezohedran, such as $C_{1} d_{1} o_{1} d_{2}$ (fig. 11, Plate II.), must, by symmetry of construction, pass through the line $C_{1} o_{1}$. Hence in the sphere of projection (figs. $31 *$ and $32 *$, Plate IV.*), the

24 poles of any twenty-four-faced trapezohedron will lie in each of the 24 arcs $C O$.
93. The normals to any face of the three-faced octahedron (fig. 13, Plate II.), such as $C_{1} o_{1} C_{2}$, must, by symmetry of construction, pass through the line $d_{1} o_{1}$. Hence in the sphere of projection, (figs. 31 and 32, Plate IV.), the 24 poles of the three-faced octahedron will lie in each of the arcs $D O$.
94. Hence in the same zone $C_{1} D_{1} C_{2} D_{9} C_{6} D_{11} C_{4} D_{3}$ there will be four poles of the cube, $C_{1}, C_{2}, C_{6}, C_{4}$; four poles of the rhombic dodecahedron, $D_{1}, D_{9}, D_{11}, D_{3}$; and eight poles of the four-faced cube.

The same will be true of the two zones $C_{2} D_{5} C_{3}$ and $C_{3} D_{2} C_{1}$.
Again in the zone $C_{3} O_{1} D_{1} O_{4} C_{5} O_{6} D_{11} O_{7} O_{5}^{2}$, there will be two poles of the cube, C_{3} and C_{5}, two poles of the rhombic dodecahedron, D_{1} and D_{11}, four of the octahedron, O_{1}, O_{4}, O_{6}, and O_{7}, four of the three-faced octahedron, and also four of the twenty-four-faced trapezohedron, will lie.

The same will also be true for the five other zones, $C_{3} O_{5} D_{9}$, $C_{1} O_{1} D_{5}, C_{1} O_{4} D_{8}, O_{2} O_{1} D_{2}$, and $C_{2} O_{4} D_{4}$.
95. The 48 poles of any six-faced octahedron will, from the symmetry of its construction, occupy similar positions within the 48 spherical triangles $C D O$ (figs. $31 *$ and $32 *$, Plate IV.*).
96. In each of the 48 spherical triangles $O D O$ (figs. 31 and 32, Plate IV.*) is marked a notation for each of the 48 poles of the six-faced octahedron in terms of its three indices. The order in which the three indices $1, m$, and n are written, mark the distances at which the face of the six-faced octahedron corresponding to the pole marked on the sphere of projection, cuts each of three cubical axes taken in the order $A C_{3}, A C_{2}$, and $A C_{1}$ (fig. 27, Plate IV.). When the index has a negative sign placed over it, it signifies that it cuts the axis $A C_{3}$ produced in the direction $A C_{5}, A C_{2}$ in $A C_{4}$, or $A C_{1}$ in $A C_{6}$.

Thus the spherical triangle $C_{2} D_{5} O_{1}$ (fig. $31 *$, Plate IV.*) has marked in it the indices $m, 1, n$, which indicates that the face $C_{2} d_{50} 0_{1}$ of the six-faced octahedron (fig. 3, Plate I.) cuts the axis $A C_{3}$ produced at the distance $m \times A C_{3}$, the axis $A C_{2}$ at the point C_{2}, and the third axis $A C_{1}$ produced, at $n \times A C_{r}$

Again the indices $\bar{n} 1 \frac{1}{m}$, in the triangle $C_{9} O_{8} D_{9}$ (fig. $31 *$, Plate IV.*), show that the face $C_{2} o_{8} d_{9}$ of the six-faced octahedron (fig. 3, Plate I.) cuts the axis $A C_{5}$ produced at a distance $n \times A C_{5}$, the axis $A C_{2}$ at the point C_{2}, and the axis $A C_{6}$ at a distance $m \times A G_{6}$.
97. The indices marked on (figs. 31^{*} and $32 *$, Plate IV.*), enable us readily to find the notation for any face of any form in Plate II.

In (fig. $31 *$, Plate IV.*) the indices $m 1 \bar{n}$ in triangle $C_{2} o_{5} d_{5}$
signify that the face of the six-faced octahedron marked $C_{2} o_{5} d_{5}$ (fig. 10, Plate II.) cuts the axis $A O_{3}$ at a distance m from A, the axis $A C_{2}$ at C_{2}, and $A C_{6}$ at a distance n from A.

The indices $m 1 n$ in the triangle $C_{2} O_{1} D_{5}$ indicate that the face of the six-faced octahedron marked $C_{2} o_{1} d_{5}$, fig. 10, Plate II., cuts $A C_{3}$ at a distance $m, A C_{2}$ at C_{2}, and $A C_{3}$ at a distance n from A.
98. Hence n without any sign over it signifies that the face of the six-faced octahedron which it indicates cuts the cubic axis $C_{1} A C_{6}$ in the direction of $A C_{1}$ produced; if it has the sign - placed over it, it signifies that the face cuts the axis in the direction of $A C_{6}$ produced.

Now if m be infinite, represented by the symbol ∞, or $\frac{1}{o}$, this signifies that the face cuts the axis neither in the direction $A O_{1}$ nor $A O_{6}$, and that if produced ever so far in either direction it will not cut the axis $C_{1} A C_{6}$, and is therefore parallel to it. Hence when $m=\infty, \bar{m}$ and m indicate that the face is parallel to the axis, to $A C_{3}$ if m is in the first place, to $A C_{2}$ if in the second, and to $A C_{1}$ if in the third place.
99. Now, if in the triangle $C_{2} D_{5} O_{5}$ (fig. 31*, Plate IV.*), whose indices are $m \bar{n}$, we make both m and n infinite, since ∞ and ∞ are the same, we see that $\infty 1 \infty$ is the index of the face $O_{1} O_{4} O_{3} O_{5}$ of the cube (fig. 1, Plate I.); also that, substituting the sign ∞ for both m and \bar{n}, the same notation $\infty 1 \infty$ stands for each of the eight triangles $C_{2} O_{1} D_{5}, C_{2} O_{1} D_{1}$, $C_{2} O_{4} D_{1}, C_{2} O_{4} D_{8}, C_{2} O_{8} D_{8}, C_{2} O_{8} D_{9}, C_{2} O_{5} D_{9}$, and $C_{2} O_{5} D_{5}$.
100. When n alone is infinite in the index $m 1 \bar{n}, m 1 \infty$ is the index of both $C_{2} o_{5} d_{5}$ and $C_{2} o_{1} d_{5}$, or of the face $C_{2} o_{1} o_{5}$ of the four-faced cube (fig. 9, Plate II.).
101. When $n=\infty$, and $m=1$, the index $m 1 \bar{n}$ becomes 11∞, which is the symbol for the four triangles $C_{2} d_{5} o_{5}$, $C_{3} d_{5} o_{5}, C_{2} o_{1} d_{5}$, and $C_{3} o_{1} d_{5}$, or of the face $C_{2} o_{1} C_{3} 0_{5}$ of the rhombic dodecahedron (fig. 12, Plate II.).
102. When $n=m$, the index $m 1 \bar{n}$ becomes $m 1 \bar{m}$, which is that of the two triangles $C_{2} o_{5} d_{5}$ and $C_{2} d_{9} O_{5}$, or of the face $C_{2} d_{9} o_{5} d_{5}$ of the twenty-four faced trapezohedron (fig. 11, Plato II.).
103. When $m=1$, the index $m 1 \bar{n}$ becomes $11 \bar{n}$, which is that of the two triangles $C_{2} o_{5} d_{5}, C_{3} 0_{5} d_{5}$, or of the face $C_{2} 0_{5} C_{3}$ of the three-faced octahedron (fig. 13, Plate II.).
104. When $m=1$ and $n=1$, the index $m 1 \bar{n}$ becomes $11 \overline{1}$, which is the same for the six triangles, $C_{2} o_{5} d_{5}, C_{3} o_{5} d_{5}, C_{8} o_{5} d_{10}$, $C_{6} o_{5} d_{10}, O_{6} o_{5} d_{9}$, and $C_{2} o_{5} d_{9}$, or of the face $C_{2} O_{3} C_{6}$ of the octahedron (fig. 14, Plate II.).
105. To find the normal to a plane from the centre of the cubical axes in terms of the indices of that plane.

Let $B C D$ (fig. 33^{*}, Plate IV.*) be a plane cutting the three cubical axes $A B, A C$, and $A D$, in the points B, C, and D. Let $A B=a, A O=b$, and $A D=c$, be the three indices of this plane.

Through A draw $A E$ perpendicular to $B C$ in triangle $A B C$. Join ED.

Through A draw $A F$ perpendicular to $D E$ in triangle $A D E$.
Then $A F$ is perpendicular to the plane $A B C$. Let $A F=R$, then R is the normal drawn through A to the plane whose indices are a, b, c.

Through F in triangle $A D E$ draw $F G$ perpendicular to $A E$, and in triangle $A B C$ draw $G H$ perpendicular to $A B$.

Let $A H=x, G H=y$, and $F G=z$, are called the rectangular co-ordinates of the point F, referred to the rectangular axes $A B, A C, A D$, or $A X, A Y, A Z$ (fig. 33^{*}, Plate IV.*), is drawn in perspective. (Fig. 85^{*}) is the triangle $A O B$ of (fig. 33*), drawn on the plane of the paper ; (fig. 34) the triangle DAE of the same figure, also on the plane of the paper.

Let angle $A E F=\beta$. Then by construction $A F G=\beta$, $D A F=\beta, A D F=90^{\circ}-\beta$, and $F A E=90^{\circ}-\beta$.
$z=F G=A F^{\prime} \sin H A G=R \cos \beta$.
Also $R=A F=A D \sin A D F=c \cos \beta$.
Hence $z=\frac{R}{c}$.
Again, in triangle $A G F, A G=A F \sin A F G=R \sin \beta$.
Also in triangle $A B C$, let $a=$ angle $A B C$, then by construction $C A E=a, A G H=a, E C A=90-a$, and $E A B=90-a$.

In triangle $A G H, x=A H=A G \sin A G H=A G \sin a=$ $R \sin \beta \sin a$.
Also in triangle $A E B, A E=a \sin a$ and $\sin a=\frac{A E}{a}$
In triangle $A F E, R=A F=A E \sin \beta$ and $\sin \beta=\frac{R}{A \bar{E}}$
But $x=R \sin \beta \sin a=R \cdot \frac{R}{A E} \cdot \frac{A E}{a}=\frac{R^{e}}{a}$
Again in triangle $A G H, y=G H=A G \cos a=R \sin \beta \cos a$. In triangle $A C E$,

$$
A E=A C \cos C A E=b \cos a ; \text { and } \cos a=\frac{A E}{b}
$$

But $\sin \beta=\frac{R}{A E}$
Hence $y=R \sin \beta \cos a=R \cdot \frac{R}{A E} \cdot \frac{A E}{b}=\frac{R^{2}}{b}$

Hence $x=\frac{R^{2}}{a}, y=\frac{R^{2}}{b}$, and $z=\frac{R^{2}}{c}$
In triangle $A G F, R^{2}=A F^{2}=F G^{2}+A G^{2}=z^{2}+A G^{2}$.
And in triangle $A G I I, A G^{2}=A H^{2}+H G^{2}=x^{2}+y^{2}$.
Hence $R^{2}=x^{2}+y^{2}+z^{2}=\frac{R^{4}}{a^{2}}+\frac{R^{4}}{b^{2}}+\frac{R^{4}}{c^{2}}$
And $R^{2}=\frac{1}{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}} \quad R=\frac{1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}$
106. In (fig. 33^{*}, Plate IV.*), join $C F$ and $B F$. Then because $A F=R$ is perpendicular to the plane $B C D, A F$ is perpendicular to $C F$ and $B F$ as well as $D F$.

Therefore $\cos F A D=\frac{R}{c}=\frac{\frac{1}{c}}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}$

$$
\text { also } \cos F A B=\frac{R}{a}=\frac{\frac{1}{a}}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}
$$

$$
\text { and } \cos F A O=\frac{R}{b}=\frac{\frac{1}{b}}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}
$$

Where $F A D, F A B$, and $F A C$ are the three angles which the normal makes with the three cubical axes which it cuts at the distances a, b, and c.
107. Given the indices of any two faces of a crystal of the cubical system, find the angle between their two normals at the centre of cube, or the supplement of the angle of inclination of these two faces over the edge of their intersection.
(In fig. 36*, Plate IV.*)
Let $A F=R$ be the normal to the plane whose indices are a, b, c.
$A F_{1}=R_{1}$ be the normal to the plane whose indices are a_{1}, b_{1}, c_{1}.
Let $x=A H, y=H G$, and $z=F G$ be the rectanglar co-ordinates of the point $F($ see § 105) referred to the rectangular axes $A X, A Y, A Z$.
And $x_{1}=A H_{1}, y_{1}=H_{1} G_{1}, z_{1}=F_{1} G_{1}$, similar co-ordinates for the point F_{1}.
Fig. $36 *$ is drawn in perspective. Fig. $37 *$ is the plane
$F_{1} G_{1} G F$ of (fig. 36*) drawn on the plane of the paper. (Fig. $38 *$) the plane $Y A H H_{1} G_{1}$ also drawn on the plane of the paper. Join $F F_{1}$ and $G G_{1}$. In plane $F F_{1} G_{1} G$ draw $K F$ parallel to $G G_{1}$, and therefore perpendicular $F_{1} G_{1}$; also in plane $G G_{1} H_{1} H$ draw $G L$ parallel to $H H_{1}$. Then $K F G G_{1}$ and $H G L H_{1}$ are rectangular parallelograms and their opposite sides are equal.

Then (fig. $37 *$) $F F_{1}{ }^{2}=F_{1} K^{2}+K F^{2}=\left(F_{1} G_{1}-K G_{1}\right)^{2}+G_{1} G^{2}$.

$$
=\left(F_{1} G_{1}-F G\right)^{2}+G_{1} G^{2}=\left(z_{1}-z\right)^{2}+G_{1} G^{2} .
$$

But (fig. 38*)

$$
\begin{aligned}
G_{1} G^{2} & =G L^{2}+G_{1} L^{2}=H H_{1}{ }^{2}+\left(G_{1} H_{1}-L H_{1}\right)^{2} . \\
& =\left(A H_{1}-A H\right)^{2}+\left(G_{1} H_{1}-G H\right)^{2}=\left(x_{1}-x\right)^{2}+\left(y_{1}-y\right)^{2} .
\end{aligned}
$$

And $F F_{1}{ }^{2}=\left(x_{1}-x\right)^{2}+\left(y_{1}-y\right)^{2}+\left(z_{1}-\dot{z}\right)^{2}$.
We have seen (§ 105) that $R^{2}=x^{2}+y^{2}+z^{2}$, and that

$$
x=\frac{R^{2}}{a}, y=\frac{R^{2}}{b}, \quad \text { and } z=\frac{R^{2}}{c}
$$

Similarly $R_{1}{ }^{2}=x_{1}{ }^{2}+y_{1}{ }^{2}+z_{1}{ }^{2}$, and $x_{1}=\frac{R_{1}{ }^{2}}{a}, y_{1}=\frac{R_{1}{ }^{2}}{b}$, and $z_{1}=\frac{R_{1}{ }^{2}}{c}$
In triangle $F F^{1} A$, fig. 39, if we put θ for the angle $F A F_{1}$ or the angle between the normals $A F, A F_{1}$, or R and R_{1} at the point A; we have
$F F_{1}{ }^{2}=A F_{1}{ }^{2}+A F^{2}-2 A F_{1} \cdot A F \cos \theta=R_{1}^{2}+R^{2}-2 R R_{1} \cos \theta ;$
but $F F_{1}^{2}=\left(x_{1}-x\right)^{2}+\left(y_{1}-y\right)^{2}+\left(z_{1}-z\right)^{2}$.
Hence $\left(x_{1}-x\right)^{2}+\left(y_{1}-y\right)^{2}+\left(z_{1}-z\right)^{2}=R_{1}{ }^{2}+R^{2}-2 R R_{1} \cos \theta$; or $x_{1}^{2}-2 x x_{1}+x^{2}+y_{1}^{2}-2 y_{1} y+y^{2}+z_{1}^{2}-2 z_{1} z+z^{0}=R_{1}^{2}+R^{2}-$ $2 R R_{1} \cos \theta$.
But $R_{1}{ }^{2}=x_{1}{ }^{2}+y_{1}{ }^{2}+z_{1}{ }^{2}$ and $R^{2}=x^{2}+y^{2}+z^{2}$.
Hence $x_{1} x+y_{1} y+z z_{1}=R R_{1} \cos \theta$,

$$
\begin{gathered}
\text { or } \frac{R^{2} R_{1}^{2}}{a a_{1}}+\frac{R^{2} R_{1}^{2}}{b b_{1}}+\frac{R^{2} R^{12}}{c c_{1}}=R R_{1} \cos \theta . \\
\quad \cos \theta=R R_{1}\left(\frac{1}{a a_{1}}+\frac{1}{b b_{1}}+\frac{1}{c c_{1}}\right),
\end{gathered}
$$

but $R^{o}=x^{2}+y^{2}+z^{2}=\frac{R^{4}}{a^{2}}+\frac{R^{4}}{b^{2}}+\frac{R^{4}}{c^{2}}$ and $R^{2}=\frac{1}{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}$

$$
\text { also } R_{1}{ }^{2}=\frac{1}{\frac{1}{a_{1}{ }^{2}}+\frac{1}{b_{1}{ }^{2}}+\frac{1}{c_{1}{ }^{2}}}
$$

Therefore $\cos \theta=\frac{\frac{1}{a a_{1}}+\frac{1}{b b_{1}}+\frac{1}{c c_{1}}}{\sqrt{\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right)\left(\frac{1}{a_{1}{ }^{2}}+\frac{1}{b_{1}{ }^{2}}+\frac{1}{c_{1}{ }^{2}}\right)}}$
108. In fig. 33, Plate IV.*, let $p_{1}=$ angle $F A B$, which the normal $A F$ makes with the axis $A X$; $p_{2}=$ angle $F A C$, which the normal makes with the axis $A Y$; and $p_{3}=$ angle $F A D$ makes with $A Z$.
$A X$ is the normal to a face of the cube which cuts the axis $A X$ at $a, A Y$ at ∞, and $A Z$ at ∞; or $a_{1}=a, b_{1}=\dot{\infty}=\frac{1}{o}$, and $c_{1}=\infty=\frac{1}{o}$
and $\cos p_{1}=\frac{\frac{1}{a^{\varepsilon}}}{\sqrt{\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{q}}\right) \frac{1}{a^{2}}}}=\frac{\frac{1}{a}}{\sqrt{\frac{1}{a^{q}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}$
$A Y$ is the normal to a face of the cube, or a plane whose indices are $a_{1}=\frac{1}{o}, b_{1}=b$, and $c_{1}=\frac{1}{o}$

$$
\cos p_{2}=\frac{\frac{1}{b}}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}
$$

$A Z$ is the normal to a plane whose indices are $a_{1}=\frac{1}{o}, b_{1}=\frac{1}{0}$, and $c_{1}=c$,
and $\cos p_{3}=\frac{\frac{1}{c}}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}$
The same formulæ we obtained in $\S 106$.
109. If p_{1}, p_{2}, p_{3} be the angles which the normal to the plane whose indices are $a b c$, makes with the three axes $A X, A Y$, and $A Z$;

Also, q_{1}, q_{2}, q_{3} the angles the normal to the plane whose indices are $a_{1} b_{1} c_{1}$, makes with the same axes,

$$
\begin{aligned}
& \text { Then } \cos p_{1}= \frac{\frac{1}{a}}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}} \cos p_{2}=\frac{\frac{1}{b}}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}} \\
& \text { and } \cos p_{3}=\frac{\frac{1}{c}}{\sqrt{\frac{1}{a^{2}}+\frac{1}{l^{2}}+\frac{1}{c^{2}}}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { and } \cos q_{1}= \frac{\frac{1}{a_{1}}}{\sqrt{\frac{1}{a_{1}{ }^{2}}+\frac{1}{b_{1}^{2}}+\frac{1}{c_{1}^{2}}}} \cos q_{2}=\frac{\frac{1}{b_{1}}}{\sqrt{\frac{1}{a_{1}{ }^{2}}+\frac{1}{b_{1}{ }^{2}}+\frac{1}{c_{1}{ }^{2}}}} \\
& \text { and } \cos q_{3}=-\frac{\frac{1}{c_{1}}}{\sqrt{\frac{1}{a_{1}^{2}}+\frac{1}{b_{1}^{2}}+\frac{1}{c_{1}^{2}}}}
\end{aligned}
$$

Substituting these values in the expression

$$
\cos \theta=\frac{\frac{1}{a a_{1}}+\frac{1}{b b_{1}}+\frac{1}{c c_{1}}}{\sqrt{\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right)\left(\frac{1}{a_{1}^{2}}+\frac{1}{b_{1}^{2}}+\frac{1}{c_{1}^{2}}\right)}}
$$

we have

$$
\cos \theta=\cos p_{1} \cos q_{1}+\cos p_{2} \cos q_{2}+\cos p_{3} \cos q_{3}
$$

110. If, in (figs. $31 *$ and $32 *$), we substitute for $1, m, n$; cos $p_{1}, \cos p_{2}$, and $\cos p_{3}$ in the order in which they occur, we have a notation for every face of the six-faced octahedron in terms of p_{1}, p_{2}, and p_{3}, the polar distances of the face from the three adjacent poles of the cube; $-1,-m$, and $-n$ being replaced by $-\cos p_{1},-\cos p_{2}$, and $-\cos p_{3}$.

Thus if θ be the angle between the normals of the faces whose poles lie in the spherical triangles $C_{1} D_{1} O_{1}$ and $C_{2} O_{1} D_{2}$, or the supplement of the angle of their inclination over the edge $C_{1} o_{1}$ (fig. 3, Plate I.),

$$
\cos \theta=\frac{\frac{1}{m n}+\frac{1}{m n}+1}{\sqrt{\left(\frac{1}{n^{2}}+\frac{1}{m^{2}}+1\right)\left(\frac{1}{m^{2}}+\frac{1}{n^{2}}+1\right)}}=\frac{\frac{2}{m n}+1}{1+\frac{1}{m^{2}}+\frac{1}{n^{2}}}
$$

if expressed by the indices of the six-faced octahedron.
$\cos \theta=\cos p_{3} \cos p_{2}+\cos p_{2} \cos p_{3}+\cos p_{1} \cos p_{1}$

$$
=2 \cos p_{3} \cos p_{2}+\cos { }^{2} p_{1}
$$

if expressed by the three polar distances of the pole of any face from the three adjacent poles of the cube.
111. The notation for each face of a crystal, or of its pole on the sphere of projection, is expressed in the terms of the three indices at which a plane drawn through a point in one of the cubical axes, taken at an arbitrary distance called unity from the centre where the axes meet, cuts the other two axes which are at right angles to the former ; the indices being reckoned positive or negative as the points of intersection are right or left of A along the three axes $A C_{1}, A C_{2}$, and $A C_{3}$.
\forall ol. II.
112. The relations of any pole to any other pole, and other problems relating to crystals, can therefore be solved by that branch of Geometry of Three dimensions which relates to the properties of the plane and straight line. This method is used by Professor Naumann, of Freiberg, in his works on crystallography.
113. The use of the sphere of projection has led to that of spherical trigonometry for solving all questions of crystallography, retaining, however, the notation for the faces of crystals in terms of the indices of the plane cutting the axes derived from the geometry of the plane. Professor Miller, of Cambridge, uses Spherical Trigonometry in his works on crystallography.
114. The position of any pole on the sphere of projection may be determined by its polar distance from a definite pole on the sphere corresponding to the north pole of the terrestrial sphere, and its longitude by an arc measured along the equator of the fixed pole, from a definite point in that equator. Just as the position of any point on the earth's surface is determined by its latitude and longitude.

In the crystallographic sphere of projection it is more convenient to use the polar distance instead of the latitude; the polar distance being an arc 90° less than that of the latitude.
115. The forms of the cubical system possess the highest degree of symmetry, each face of every form being symmetrical right and left from the centre to each of the three cubical axes. Hence we have seen that the three indices taken positive or negative, or right and left of the centre, give the notation or express this degree of symmetry.
116. In (figs. 31* and 32*, Plate IV.*), we see that if in the sphere of projection we take C_{1} as the north pole and C_{6} as the south, and $C_{3} C_{2} C_{5} C_{4}$ as the equator, and measure longitude from C_{3}.

If p be the north polar distance of the face $1 m n$ and λ be its longitude,

Then p will be the north polar distance of the eight faces or poles $1 m n, m 1 n, \bar{m} 1 n, \overline{1} m n, \overline{1} \bar{m} n, \bar{m} \overline{1} n, m \overline{1} n$, and $1 \bar{m} n$, whose longitudes are $\lambda, 90-\lambda, 90+\lambda, 180-\lambda, 180+\lambda$, $270-\lambda, 270+\lambda$, and $360-\lambda$.

Also p will be the south polar distance of the eight faces $1 m \bar{n}, m 1 \bar{n}, \bar{m} 1 \bar{n}, \overline{1} m \bar{n}, \overline{1} \bar{m} \bar{n}, \bar{m} \overline{1} \bar{n}, m \overline{1} \bar{n}$, and $1 m \bar{n}$, whose longitudes are respectively the same as the former.

Again, if we take C_{2} as the north pole, C_{4} as the south, and $C_{1} C_{3} C_{6} C_{5}$ as the equator, and measure the longitude from C_{1}, we have eight faces, $n n 1,1 n m, 1 n \bar{m}, m n \overline{1}, \bar{m} \bar{n} 1, \overline{1} n \bar{m}$, $1 n m$, and $\bar{m} n 1$, having the same north polar distances and the same lougitudes as the former.

Also eight more faces $m \bar{n} 1,1 \bar{n} m, 1 \bar{n} \bar{m}, m \bar{n} \overline{1}, \bar{m} \bar{n} \overline{1}$, $\overline{1} \bar{n} \bar{m}, \overline{1} \bar{n} m, \bar{m} \bar{n} 1$, having the same south polar distance and longitudes as the former.

The 16 other faces will have the similar polar distances and longitudes, taking C_{3} as the north and C_{5} as the south pole, and $C_{1} C_{2} C_{6} C_{4}$ as the equator.
117. (Fig. 39*, Plate IV.*).-In the three rectangular cubical axes, take $A B=1, A M=m, A N=n$.

Through A draw $A G$ perpendicular $M B, A H$ perpendicular $N C_{3}$, and $A K$ perpendicular $M N$.

Join $N G, H M$, and $B K$ meeting in F. Join $A F$.
Since the normal from A or the perpendicular to the plane $N M B$ must, by construction, lie in each of the three planes $N A G, H A M$, and $K A B, A F$, their common intersection, must be the normal to the plane $N M B$.

Hence $A F$ is the normal to the plane whose notation is 1 mn . $A G$ is the normal to a plane passing through $M C_{3}$ parallel to $A N$, or the normal to a face of the four-faced cube whose notation is $1 m \infty, A H$ the normal to $1 \infty n, A K$ to $\infty m n$ or $\infty 1 \frac{n}{m}$.
(Fig. 40*, Plate IV.*).-Let C_{1}, C_{2}, C_{3} be the poles of the three rectangular or cubical axes, or the points where $A N, A M$, and $A B$ of fig. 39* cut the sphere of projection.

Let h, k, and g be the points where $A B, A K$, and $A G$ cut the sphere of projection. Join $C_{1} g, C_{3} k$, and $C_{2} h$ by arcs of great circles meeting in f.

Then g is the pole of $1 m \infty, h$ of $1 \infty n, k$ of $\infty \frac{n}{m}$, and f of $1 m n$.

Let $f C_{3}=p_{1}, f C_{2}=p_{2}, f C_{1}=p_{3}, C_{2} k=\lambda_{1}, C_{3} h=\lambda_{2}, C_{3} g=\lambda_{3}$.
Then p_{1}, p_{2}, and p_{3} will be the polar distances of the pole of $1 m n$ from C_{3}, C_{2}, and C_{1}, taken in order of magnitude.

Comparing § 96 with (fig. 31*, Plate IV.*), the face $1 m n$ cuts the axis $A C_{3}$ in $B, A C_{2}$ in M, and $A C_{1}$ in N to form (fig. 39*). Hence arc $C_{1} f$ (fig. $40 *$) $=p_{3}$, and $C_{3} g=\lambda_{3}$, is its polar distance and longitude.

The face 1 nm cuts the axis $A C_{3}$ in $B, A C_{2}$ in N, and $A C_{1}$ in M; and (fig. $40 *$) $C_{2} f=p_{2}$ and $C_{3} h=\lambda_{2}$, is its polar distance and longitude.

Also the face $m n 1$ cuts the axis $A C_{3}$ in $M, A O_{2}$ in N, and $A C_{1}$ in B; and (ig. 40*) $C_{3} f=p_{1}$ and $C_{2} k=\lambda_{1}$, is its polar distance and longitude.

Calling (figs. $31 *$ and $32 *$, Plate IV.*), C_{1} the North pole, $C_{3} C_{2} C_{5}$ the equator, and measuring longitude from C_{3}, λ_{3} will be the longitude of $1 m n, 90^{\circ}-\lambda_{3}$ of $m 1 n, 90^{\circ}+\lambda_{3}$ of $\bar{m} 1 n_{2}$
$180^{\circ}-\lambda_{3}$ of $\overline{1} m n, 180^{\circ}+\lambda_{3}$ of $\overline{1} \bar{m} n, 270^{\circ}-\lambda_{3}$ of $\bar{m} \overline{1} n$, $270^{\circ}+\lambda_{3}$ of $m \overline{1} n$, and $360^{\circ}-\lambda_{3}$ of $1 \bar{m} n$.

The north polar distances of these eight faces will each be p_{3}.
λ_{3} the longitude of $1 m \bar{n}, 90^{\circ}-\lambda_{3}$ of $m 1 \bar{n}, 90^{\circ}+\lambda_{3}$ of $\bar{m} 1 n, 180^{\circ}-\lambda_{3}$ of $\overline{1} m \bar{n}, 180^{\circ}+\lambda_{3}$ of $\overline{1} \bar{m} \bar{n}, 270^{\circ}-\lambda_{3}$ of $m \overline{1} \bar{n}$, $270^{\circ}+\lambda_{3}$ of $m \overline{1} \bar{n}$, and $360^{\circ}-\lambda_{3}$ of $1 \bar{m} \bar{n}$.

The north polar distances of these eight faces will each be $180^{\circ}-p_{3}$.
λ_{2} will be the longitude of $1 \mathrm{~nm}, 90^{\circ}-\lambda_{2}$ of $n 1 \mathrm{~m}, 90^{\circ}+\lambda_{2}$ of $\bar{n} 1 \mathrm{~m}, 180^{\circ}-\lambda_{2}$ of $\overline{1} n m, 180^{\circ}+\lambda_{2}$ of $\overline{1} \bar{n} m, 270^{\circ}-\lambda_{2}$ of $\bar{n} \overline{1} \mathrm{~m}, 270^{\circ}+\lambda_{2}$ of $n \overline{1} \mathrm{~m}, 360^{\circ}-\lambda_{2}$ of $1 \bar{n} \mathrm{~m}$.

The north polar distances of these eight faces will each be p_{2}.
The eight similar faces in the southern hemisphere will have the same longitudes as those corresponding to them in the northern, the eight north polar distances being each equal $180^{\circ}-p_{2}$.
λ_{1} will be the longitude of $m n 1,90^{\circ}-\lambda_{1}$ of $n m 1,90^{\circ}+\lambda_{1}$ of $\bar{n} m 1,180^{\circ}-\lambda_{1}$ of $\bar{m} n 1,180^{\circ}+\lambda_{1}$ of $\bar{m} \bar{n} 1,270^{\circ}-\lambda_{1}$ of $\bar{n} \bar{m} 1,270^{\circ}+\lambda_{1}$ of $n \bar{m} 1$, and $360^{\circ}-\lambda_{1}$ of $m \bar{n} 1$.
p_{1} will be the north polar distance of each of these eight faces.

The corresponding eight faces of the southern hemisphere will have the same longitudes as the corresponding ones in the northern, $180^{\circ}-p_{1}$ being the north polar distance of these eight faces.

Hence the 48 faces or poles of the six-faced octahedron can be expressed in terms of $p_{1}, \lambda_{1}, p_{2}, \lambda_{2}$, and p_{3}, λ_{3}; and, as all other forms of the cubical system can be derived from those of the six-faced octahedron, all faces of those forms can be similarly expressed.
118. Given p_{3} and λ_{3} to determine p_{1} and λ_{1}, and also p_{2} and λ_{2} in terms of the former.

From the spherical triangle $C_{1} f C_{3}$ (fig. $40 *$, Plate IV.*), we have by the formulæ of spherical trigonometry,
$\cos f C_{3}=\cos C_{1} C_{3} \cos C_{1} f+\sin C_{1} C_{3} \sin C_{1} f \cos f C_{1} C_{3} ;$
but the spherical angle $f O_{1} C_{3}$ is measured by the arc $g C_{3}$ at the equator.

Hence, substituting the values of these ares given in the previous section, we have

$$
\begin{aligned}
\cos p_{1} & =\cos 90^{\circ} \cos p_{3}+\sin 90^{\circ} \sin p_{3} \cos \lambda_{3} \\
& =\sin p_{3} \cos \lambda_{3}
\end{aligned}
$$

Again, in the spherical triangle $f g C_{3}$, we have

$$
\frac{\sin f g}{\sin f C_{3}}=\frac{\sin f C_{3} g}{\sin f g C_{3}}
$$

but spherical triangle $f C_{3} g$ is measured by arc $\hbar C_{2}$, and $f y C_{3}$ is 90°; hence

$$
\frac{\sin \left(90^{\circ}-p_{3}\right)}{\sin p_{1}}=\frac{\sin \lambda_{1}}{\sin 90^{\circ}} \text { and } \sin \lambda_{1}=\frac{\cos p_{3}}{\sin p_{1}}
$$

From the spherical triangle $C_{1} C_{2} f$, we have $\cos C_{2} f=\cos C_{1} C_{2} \cos C_{1} f+\sin C_{1} C_{2} \sin C_{1} f \cos C_{2} C_{1} f$,
or, $\cos p_{2}=\cos 90^{\circ} \cos p_{3}+\sin 90^{\circ} \sin p_{3} \cos \left(90^{\circ}-\lambda_{3}\right)$

$$
=\sin p_{3} \sin \lambda_{3}
$$

From the spherical triangle $C_{2} f g$, we have

$$
\begin{aligned}
& \frac{\sin C_{2} f}{\sin f g}=\frac{\sin C_{2} g f}{\sin f C_{2} g} \text { or } \frac{\sin p_{2}}{\sin 90^{\circ}-p_{3}}=\frac{\sin 90^{\circ}}{\sin \lambda_{2}} \\
& \text { and } \sin \lambda_{2}=\frac{\cos p_{3}}{\sin p_{2}}
\end{aligned}
$$

Hence $\cos p_{1}=\sin p_{3} \cos \lambda_{3}$, $\sin \lambda_{1}=\frac{\cos p_{3}}{\sin p_{1}} ;$
and $\cos p_{2}=\sin p_{3} \sin \lambda_{3}, \sin \lambda_{2}=\frac{\cos p_{3}}{\sin p_{2}}$
119. To find the angle between the poles of two faces in terms of their polar distances and longitudes.

Lot $C_{1} F$ be the polar distance of F (fig. 41, Plate IV.*), $U_{3} L$ its longitude, $C_{1} f$ the polar distance, and $C_{3} l$ the longitude of f.

Also let $C_{1} F=P_{3}, C_{1} f=p_{3} ; C_{3} L=L_{3}, C_{3} l=\lambda_{3}$, and $F f=\theta$.
Then in spherical triangle $C_{1} F f$
$\cos F f=\cos C_{1} F \cos C_{1} f+\sin C_{1} F \sin C_{1} f \sin F C_{1} f$.
Then angle $F C_{1} f$ is measured by arc $L l=L C_{3}-l C_{3}$.
Hence $\cos \theta=\cos P_{3} \cos p_{3}+\sin P_{3} \sin p_{3} \cos \left(L_{3}-\lambda_{3}\right)$. To adapt this to logarithmic computation-
$\cos \theta=\cos p_{3}\left\{\cos P_{3}+\sin P_{3} \tan p_{3} \cos \left(L_{3}-\lambda_{3}\right)\right\}$.
Let $\tan a=\tan p_{3} \cos \left(L_{3}-\lambda_{3}\right)$.
Then $\cos \theta=\cos p_{3}\left\{\cos P_{3}+\tan a \cdot \sin P_{3}\right\}$

$$
\begin{aligned}
& =\frac{\cos p_{3}}{\cos a}\left\{\cos P_{3} \cos a+\sin P_{3} \sin a\right\} \\
& =\frac{\cos p_{3}}{\cos a} \cos \left(P_{3}-a\right) .
\end{aligned}
$$

120. To find the distance between any two poles on the sphere of projection in terms of the three polar distances from C_{1}, C_{2}, and C_{3}.
§119. $\cos \theta=\cos P_{3} \cos p_{3}+\sin P_{3} \sin p_{3} \cos \left(L_{3}-\lambda_{3}\right)$

$$
\begin{aligned}
& =\cos P_{3} \cos p_{3}+\sin P_{3} \sin P_{3}\left(\cos L_{3} \cos \lambda_{3}\right. \\
& \left.\quad+\sin L_{3} \sin \lambda_{3}\right) \\
& =\cos P_{3} \cos p_{3}+\sin P_{3} \sin p_{3} \cos L_{3} \cos \lambda_{3} \\
& \quad+\sin P_{3} \sin p_{3} \sin L_{3} \sin \lambda_{3} ;
\end{aligned}
$$

but§ 118, $\begin{array}{ll}\cos p_{1}=\sin p_{3} \cos \lambda_{3} & \cos P_{1}=\sin P_{3} \cos L_{3} \\ & \cos p_{2}=\sin p_{3} \sin \lambda_{3}\end{array} \quad \cos P_{2}=\sin P_{3}^{3} \sin \tilde{L}_{3}$.

Hence $\cos \theta=\cos P_{3} \cos p_{3}+\cos P_{2} \cos p_{2}+\cos P_{1} \cos p_{1}$.
The same formulæ which we obtained by geometry of three dimensions, § 109.
121. To find the polar distances and longitudes in terms of the-indices.

Referring to § 117 and (fig. $40 *$, Plate IV. $*$), C_{1}, C_{2}, and C_{3} are poles of the cube, f is a pole of $1 m n, g$ of $1 m \infty, h$ of $1 \infty n, k$ of $\infty 1 \frac{n}{m}, C_{3}$ of $1 \infty \infty, C_{2}$ of $\infty 1 \infty$, and C_{1} of $\infty \infty 1$. $f C_{3}=p_{1}, f C_{2}=p_{2}, f C_{1}=p_{3}, C_{2} k=\lambda_{1}, C_{3} h=\lambda_{2}, C_{3} g=\lambda_{3}$.

Then λ_{1} is the distance between the poles of $\infty 1 \frac{n}{m}$ and $\infty 1 \infty, p_{1}$ that between $1 m n$ and $1 \infty \infty$.

Hence, § 107,

$$
\begin{array}{rlrl}
\cos \lambda_{1}=\frac{1}{\sqrt{1+\frac{m^{2}}{n^{2}}}} & \cos p_{1} & =\frac{1}{\sqrt{1+\frac{1}{m^{2}}+\frac{1}{n^{2}}}} \\
\sec ^{2} \lambda_{1} & =1+\frac{m^{2}}{n^{2}} & \sec ^{2} p_{1} & =1+\frac{1}{m^{2}}+\frac{1}{n^{2}} \\
\tan ^{2} \lambda_{1} & =\frac{m^{2}}{n^{2}} & \tan ^{2} p_{1} & =\frac{1}{m^{2}}+\frac{1}{n^{2}}=\frac{1}{m^{2}}\left(1+\frac{m^{2}}{n^{2}}\right) \\
& =\frac{1}{m^{2}} \sec ^{2} \lambda_{1} \\
\tan \lambda_{1}=\frac{m}{n} & \tan p_{1} & =\frac{1}{m} \sec \lambda_{1} \\
n & =m \cot \lambda_{1} & m & =\sec \lambda_{1} \cot p_{1} \\
& =\cot \lambda_{1} \sec \lambda_{1} \cot p_{1} & & \\
& \frac{\cot p_{1}}{\sin \lambda_{1}} &
\end{array}
$$

Again λ_{2} is the distance between $1 \infty n$ and $1 \infty \infty, p_{2}$ that between $1 m n$ and $\infty 1 \infty$.

Hence, § 107,

$$
\begin{array}{rlrl}
& \begin{aligned}
& \S 107, \\
& \cos \lambda_{2}=\frac{1}{\sqrt{1+\frac{1}{n^{2}}}}
\end{aligned} & \cos p_{2} & =\frac{1}{m} \\
\sec ^{2} \lambda_{2} & =1+\frac{1}{n^{2}} & \sec ^{2} p_{2} & =m^{2}\left(1+\frac{1}{m^{2}}+\frac{1}{n^{2}}+\frac{1}{n^{2}}\right) \\
\tan ^{2} \lambda_{2} & =\frac{1}{n^{2}} & & =1+m^{2}\left(1+\frac{1}{n^{2}}\right) \\
n & =\cot \lambda_{2} & \tan ^{2} p_{2} & =m^{2} \sec ^{2} \lambda_{2} \\
\tan ^{2} & =m \sec \lambda_{2} \\
m & =\tan p_{2} \cos \lambda_{2}
\end{array}
$$

Also λ_{3} is the distance between $1 m \infty$ and $1 \infty \infty, p_{3}$ that between $1 m n$ and $\infty \infty 1$.

And, § 107,

$$
\begin{array}{rlrl}
\cos \lambda_{3} & =\frac{1}{\sqrt{1+\frac{1}{m^{2}}}} & \cos p_{3} & =\frac{\frac{1}{n}}{\sqrt{1+\frac{1}{m^{2}}+\frac{1}{n^{2}}}} \\
\sec ^{2} \lambda_{3} & =1+\frac{1}{m^{2}} & \sec ^{2} p_{3} & =n^{2}\left(1+\frac{1}{m^{2}}+\frac{1}{n^{2}}\right) \\
\tan ^{2} \lambda_{3} & =\frac{1}{m^{2}} & & =1+n^{2}\left(1+\frac{1}{m^{2}}\right) \\
m & =\cot \lambda_{3} & \tan ^{2} p_{3} & =n^{2} \sec ^{2} \lambda_{3} \\
n & =\tan p_{3} \cos \lambda_{3} .
\end{array}
$$

Hence the indices being given, the polar distances and longitudes can be determined, or the polar distances and longitudes being given the indices can be determined.
122. To find the polar distances of any two adjacent poles of faces of the six-faced octahedron, or of the supplement of the angle over the edge of any two adjacent faces, in terms of the indices.

Let θ be the angle between any two poles adjacent to the arc CO (figs. 31* and $32 *$, Plate IV.*), ϕ adjacent to $O D$, and ψ adjacent to $C D$.

For the faces $n m 1, n n 1$,

$$
\cos \theta=\frac{\frac{1}{m n}+\frac{1}{m n}+1}{\sqrt{\left(\frac{1}{n^{2}}+\frac{1}{m^{2}}+1\right)\left(\frac{1}{m^{2}}+\frac{1}{n^{2}}+1\right)}}=\frac{\frac{2}{m n}+1}{1+\frac{1}{m^{2}}+\frac{1}{n^{2}}}
$$

Similarly for $1 n m$ and $1 m n$ we have

$$
\cos \theta=\frac{\frac{2}{m n}+1}{1+\frac{1}{m^{2}}+\frac{1}{n^{2}}}
$$

The same is true over every arc CO in (figs. 31* and 32*, Plate IV.*).
For the faces $m 1 n$ and $1 m n \cos \phi=\frac{\frac{1}{m}+\frac{1}{m}+\frac{1}{n^{2}}}{1+\frac{1}{m^{2}}+\frac{1}{n^{2}}}=\frac{\frac{2}{m}+\frac{1}{n^{2}}}{1+\frac{1}{m^{2}}+\frac{1}{n^{2}}}$
For the faces $m 1 n, m 1 \bar{n} \cos \psi=\frac{\frac{1}{m^{2}}+1-\frac{1}{n^{2}}}{1+\frac{1}{m^{2}}+\frac{1}{n^{2}}}$
123. To express θ, ϕ, and ψ in terms of the polar distances and longitudes.

Then, according to $\S 110$, if we substitute $\cos p_{1}$ for 1 , $\cos p_{2}$ for m, and $\cos p_{3}$ for n,

We have for the faces $n m 1$ and $m n 1$, or

$$
\cos p_{3}, \cos p_{2}, \cos p_{1}, \text { and } \cos p_{2}, \cos p_{3}, \cos p_{1}
$$

and $\cos \theta=\cos p_{2} \cos p_{3}+\cos p_{2} \cos p_{3}+\cos ^{2} p_{1}$

$$
=2 \cos p_{2} \cos p_{3}+\cos ^{2} p_{1}
$$

For the faces $m 1 n$, and $1 m n$, or

$$
\cos p_{2}, \cos p_{1}, \cos p_{3}, \text { and } \cos p_{1}, \cos p_{2}, \cos p_{3}
$$

and $\cos \phi=\cos p_{1} \cos p_{2}+\cos p_{1} \cos p_{2}+\cos ^{2} p_{3}$
$=2 \cos p_{1} \cos p_{2}+\cos ^{2} p_{3}$.
Also for the faces $m 1 n$ and $m 1 \bar{n}$, or
$\cos p_{2}, \cos p_{1}, \cos p_{3}$, and $\cos p_{2}, \cos p_{1}, \cos p_{3}$,
$\cos \psi=\cos ^{2} p_{2}+\cos ^{2} p_{1}-\cos ^{2} p_{3}$.
But referring to $\S 118 \cos ^{2} p_{2}=\sin ^{2} p_{3} \sin ^{2} \lambda_{3}$

$$
\text { and } \cos ^{2} p_{1}=\sin ^{2} p_{3} \cos ^{2} \lambda_{2}
$$

Hence $\cos \psi=\sin ^{2} p_{3} \sin ^{2} \lambda_{3}+\sin ^{2} p_{3} \cos ^{2} \lambda_{3}-\cos ^{2} p_{3}$

$$
=\sin ^{2} p_{3}-\cos ^{2} p_{3}=2 \sin ^{2} p_{3}-1
$$

And $1+\cos \psi=2 \sin ^{2} p_{3}$.
Therefore $2 \cos ^{2} \frac{\psi}{2}=2 \sin ^{2} p_{3}$,

$$
\text { and } \cos \frac{\psi}{2}=\sin p_{3}=\cos \left(90^{\circ}-p_{3}\right)
$$

Whence $\frac{\psi}{2}=90^{\circ}-p_{3}$, or $\psi=180^{\circ}-2 p_{3}$.
This result might have been obtained at once by inspection from (fig. 31*, Plate IV.*) For p_{3} is the north polar distance of the face $1 \mathrm{~m} n$, and $180^{\circ}-p_{3}$ that of $1 m \bar{n}$. The poles of both these faces also lie in the same meridian.

Hence $\phi=180^{\circ}-p_{3}-p_{3}=180^{\circ}-2 p_{3}$.
Again, using the formulæ $\S 119, \theta$ is the inclination of the pole of the face $m n 1$ to that of $n m 1, p_{1}$ the north polar distance of the pole of $m n 1$, and λ_{1} its longitude referred to C_{1} as north pole, and $C_{3} C_{2} C_{5}$ as equator and measured from C_{3}.
p_{1} the north polar distance of $n m 1$ and $90-\lambda_{1}$ its longitude referred to the same north pole and equator.

Hence $\cos \theta=\cos p_{1} \cos p_{1}+\sin p_{1} \sin p_{1} \cos \left(90-2 \lambda_{1}\right)$

$$
=\cos ^{2} p_{1}+\sin ^{2} p_{1_{9}} \cos \left(90-2 \lambda_{1}\right)
$$

$$
\text { and } 1-1-\cos \theta=\sin ^{2} p_{1}\left\{1-\cos \left(90-2 \lambda_{1}\right)\right\} \text {. }
$$

Therefore $2 \sin ^{2} \frac{\theta}{2}=2 \sin ^{2} p_{1} \sin ^{2} \frac{90-2 \lambda_{1}}{2}$
and $\sin \frac{\theta}{2}=\sin p_{1} \sin \left(45-\lambda_{1}\right)$.

In like manner, since p_{3} and λ_{3}; and p_{3} and $90-\lambda_{3}$, are the polar distances and longitudes of the faces $1 m n$ and $m 1 n$ referred to C_{1} as north pole, and $C_{3} C_{2} C_{5}$ as equator,
$\cos \phi=\cos p_{3} \cos p_{3}+\sin p_{3} \sin p_{3} \cos \left(90-2 \lambda_{3}\right)$,
which gives as above

$$
\sin \frac{\phi}{2}=\sin p_{3} \sin \left(45-\lambda_{3}\right) .
$$

124. Given ϕ and ψ, find p_{3} and λ_{3}.

We have seen, $\S 123$, that $p_{3}=90-\frac{\psi}{2}$;

$$
\text { also } \sin \frac{\phi}{2}=\sin p_{3} \sin \left(45-\lambda_{3}\right)
$$

therefore $\sin \left(45-\lambda_{3}\right)=\frac{\sin \frac{\phi}{2}}{\sin p_{3}}$
125. Given ψ and θ, find p_{3} and λ_{3}.
§ 123. $p_{3}=90-\frac{\psi}{2}$.

$$
\begin{aligned}
\sin \frac{\theta}{2} & =\sin \left(4 \check{5}-\lambda_{1}\right) \sin p_{1} \\
& =\left(\sin 45 \cos \lambda_{1}-\cos 45 \sin \lambda_{1}\right) \sin p_{1}
\end{aligned}
$$

but $\sin 45=\cos 45=\frac{1}{\sqrt{2}}$
$\therefore \sqrt{2} \sin \frac{\theta}{2}=\sin p_{1} \cos \lambda_{1}-\sin p_{1} \sin \lambda_{1}$.
Referring to (fig. 40^{4}, Plate IV.*), and remembering from $\begin{array}{llll}\S & 117, \text { that } & p_{1}=f C_{3} & p_{2}=f C_{2} \\ \lambda_{1}=C_{2} k & \lambda_{2}=C_{3} h & \lambda_{3}=f C_{1} \\ & =C_{3} g .\end{array}$

From the spherical triangle $f g C_{3}$, we have

$$
\frac{\sin f C_{3}}{\sin f g C_{3}}=\frac{\sin f g}{\sin f C_{3} g} \text { or } \frac{\sin p_{1}}{\sin 90}=\frac{\sin \left(90-p_{3}\right)}{\sin \lambda_{1}}=\frac{\cos p_{3}}{\sin \lambda_{1}}
$$

Therefore $\sin p_{1} \sin \lambda_{1}=\cos p_{3}$.
Also from spherical triangle $C_{1} f C_{3}$, we have

$$
\frac{\sin f C_{3}}{\sin f C_{1} O_{3}}=\frac{\sin f C_{1}}{\sin f C_{3} C_{1}} \text { or } \frac{\sin p_{1}}{\sin \lambda_{3}}=\frac{\sin p_{3}}{\sin \left(90-\lambda_{1}\right)}=\frac{\sin p_{3}}{\cos \lambda_{1}}
$$

Therefore $\sin p_{1} \cos \lambda_{1}=\sin p_{3} \sin \lambda_{3}$.
Hence
$\sqrt{2} \sin \frac{\theta}{2}=\sin p_{1} \cos \lambda_{1}-\sin p_{1} \sin \lambda_{1}=\sin p_{3} \sin \lambda_{3}-\cos p_{3}$
$=\sin \left(90-\frac{\psi}{2}\right) \sin \lambda_{3}-\cos \left(90-\frac{\psi}{2}\right)=\cos \frac{\psi}{2} \sin \lambda_{3}-\sin \frac{\psi}{2}$
Hence $\cos \frac{\psi}{2} \sin \lambda_{3}=\sqrt{2} \sin \frac{\theta}{2}+\sin \frac{\psi}{2}=\sec 45^{\circ} \sin \frac{\theta}{2}+\sin \frac{\psi}{2}$,
and $\sin \lambda_{3}=\frac{1}{\cos \frac{\psi}{2}}\left\{\sec 45^{\circ} \sin \frac{\theta}{2}+\sin \frac{\psi}{2}\right\}$

$$
=\frac{\sec 45^{\circ} \sin \frac{\theta}{2}}{\cos \frac{\psi}{2}}\left\{1+\frac{\sin \frac{\psi}{2}}{\sec 45 \sin \frac{\theta}{2}}\right\}
$$

Let $\tan ^{2} a=\frac{\sin \frac{\psi}{2} \cos 45}{\sin \frac{\theta}{2}}$
Then $\sin \lambda_{3}=\frac{\sin \frac{\theta}{2}}{\cos 45 \cos \frac{\psi}{2}}\left\{1+\tan ^{2} a\right\}=\frac{\sin \frac{\theta}{2}}{\cos 45 \cos \frac{\psi}{2} \cos ^{2} a}$
126. Given ϕ and $\boldsymbol{\theta}$, find p_{3} and λ_{3}.
(Fig. 42*, Plate IV*.) Let a_{1} be the pole of $1 m n, a_{2}$ that of $1 n m$, and a_{3} that of $m .1 n$.

Join a_{1}, a_{2} by arc of great circle cutting $o C_{3}$ in f,
and a_{1}, a_{3} by arc of great circle cutting od in e;
also C_{1}, a_{1} by $C_{1} a_{1}$ cutting $d C_{3}$ in g,
and $O a_{1}$ cutting $d O_{3}$ in h.
Then $C_{1} a_{1}=p_{3}, C_{3} g=\lambda_{3}, C_{1} o=54^{\circ} 44^{\prime}$, and $C_{2} o d=60^{\circ}$; and let $o a_{1}=P, C_{2} \circ a_{1}=L$.

Also $a_{3} a_{1}=\phi$ and $e a_{1}=\frac{\phi}{2} \quad a_{1} a_{2}=\theta \quad a_{1} f=\frac{\theta}{2}$
From spherical triangle $o a_{1} f \frac{\sin a_{1} f}{\sin a_{1} o f}=\frac{\sin o a_{1}}{\sin o f a_{1}}$

$$
\text { therefore } \frac{\sin \frac{\theta}{2}}{\sin L}=\frac{\sin P}{\sin 90^{\circ}}
$$

Also in spherical triangle $o a_{1} e \frac{\sin a_{1} e}{\sin e o a_{1}}=\frac{\sin o a_{1}}{\sin o e a_{1}}$

$$
\text { and } \frac{\sin \frac{\phi}{2}}{\sin \left(60^{\circ}-L\right)}=\frac{\sin P}{\sin 90^{\circ}}
$$

Hence $\frac{\sin \frac{\theta}{2}}{\sin L}=\frac{\sin \frac{\phi}{2}}{\sin \left(60^{\circ}-L\right)}$

$$
\text { and } \frac{\sin \frac{\theta}{2}}{\sin \frac{\phi}{2}}=\frac{\sin L}{\sin \left(60^{\circ}-L\right)}=\frac{\sin L}{\sin 60^{\circ} \cos L-\cos 60^{\circ} \sin L}
$$

$\frac{\sin \frac{\theta}{2}}{\sin \frac{\phi}{2}}=\frac{\sin L}{\frac{\sqrt{3}}{2} \cos L-\frac{1}{2} \sin L}$
$\frac{\sin \frac{\phi}{2}}{\sin \frac{\theta}{2}}=\frac{\sqrt{3}}{2} \cot L-\frac{1}{2}$
$\sqrt{3} \cot L=1+\frac{2 \sin \frac{\phi}{2}}{\sin \frac{\theta}{2}}$
Let $\tan ^{2} a=\frac{2 \sin \frac{\phi}{2}}{\sin \frac{\theta}{2}}=\frac{\sin \frac{\phi}{2}}{\sin 30^{\circ} \sin \frac{\theta}{2}}$
Therefore $\sqrt{\overline{3}} \cot L=1+\tan ^{2} a=\frac{1}{\cos ^{2} a}$ and $\tan L=\sqrt{3} \cos ^{2} a \mp \tan 60^{\circ} \cos ^{2} a$.
But we have seen that $\frac{\sin P}{\sin 90^{\circ}}=\frac{\sin \frac{\theta}{2}}{\sin L}$ and $\sin P=\frac{\sin \frac{\theta}{2}}{\sin L}$
Also from spherical triangle $C_{1} o a_{1}$ we have
$\cos C_{1} a_{1}=\cos C_{1} o \cos o a_{1}+\sin C_{1} o \sin o a_{1} \cos C_{1} o a_{1} ;$ or $\cos p_{3}=\cos 54^{\circ} 44^{\prime} \cos P+\sin 54^{\circ} 44^{\prime} \sin P \cos \left(120^{\circ}+L\right)$.

$$
=\cos 54^{\circ} 44^{\prime} \cos P-\sin 54^{\circ} 44^{\prime} \sin P \cos \left(60^{\circ}-L\right)
$$

$$
=\cos P\left[\cos 54^{\circ} 44^{\prime}-\sin 54^{\circ} 44^{\prime} \tan P \cos \left(60^{\circ}-L\right)\right]
$$

Let $\tan \beta=\tan P \cos \left(60^{\circ}-L\right)$.
Therefore $\cos p_{3}=\cos P\left\{\cos 54^{\circ} 44^{\prime}-\sin 54^{\circ} 44^{\prime} \tan \beta\right\}$

$$
\begin{aligned}
& =\frac{\cos P}{\cos \beta}\left\{\cos 54^{\circ} 44^{\prime} \cos \beta-\sin 54^{\circ} 44^{\prime} \sin \beta\right\} \\
\cos p_{3} & =\frac{\cos P}{\cos \beta} \cos \left(54^{\circ} 44^{\prime}+\beta\right)
\end{aligned}
$$

Also in spherical triangle $C_{1} e a_{1}$,

$$
\begin{gathered}
\frac{\sin C_{1} a_{1}}{\sin O_{1} e a_{1}}=\frac{\sin a_{1} e}{\sin e C_{1} a_{1}} \text { or } \frac{\sin p_{3}}{\sin 90^{\circ}}=\frac{\sin \frac{\phi}{2}}{\sin \left(45^{\circ}-\lambda_{3}\right)} \\
\text { and } \sin \left(45^{\circ}-\lambda_{3}\right)=\frac{\sin \frac{\phi}{2}}{\sin p_{3}}
\end{gathered}
$$

Hence on the whole we have the formulæ

$$
\begin{aligned}
& \tan ^{2} \alpha=\frac{\sin \frac{\phi}{2}}{\sin 30^{\circ} \sin \frac{\theta}{2}} \\
& \tan L=\tan 60^{\circ} \cos ^{2} \alpha . \\
& \sin P=\frac{\sin \frac{\theta}{2}}{\sin L} \tan \beta=\tan P \cos \left(60^{\circ}-L\right) . \\
& \cos p_{3}=\frac{\cos P}{\cos \beta} \cos \left(54^{\circ} 44^{\prime}+\beta\right) .
\end{aligned}
$$

and $\sin \left(45^{\circ}-\lambda_{3}\right)=\frac{\sin \phi}{\sin p_{3}}$
for determining p_{3} and λ_{3} in terms of ϕ and θ; all the formulw being adapted for logarithmic computation.
p_{3} and λ_{3} being determined from the values of ϕ, θ, and ψ, m and n can be expressed in terms of p_{3} and λ_{3}.
127. By the formulæ given in § 124, § 125 , and $\S 126$, any two of the angles of inclination such as ϕ, θ, and ψ, over the edges of a six-faced octahedron, having been observed by the goniometer, p_{3} and λ_{3} can be determined. Again, by formulæ in $\S 118, p_{1}$ and λ_{1}, p_{2} and λ_{2} can be obtained from the values of p_{3} and λ_{3}.
p_{3} and λ_{3} being determined, m and n can be obtained. Now all the forms of the cubical system are derived from those of the six-faced octahedron.

Hence by determining θ, ϕ, and ψ for any form of the cubical system, we can obtain the values both of p_{3} and λ_{3}, and also of the indices $1, m$, and n.

As we adrance in this treatise we shall show good reasons for preferring the polar circular co-ordinates p_{3} and λ_{3} to the linear ratios or fractions m and n.
128. The problems of crystallography being resolved for the most part into those of spherical trigonometry, may be solved by means of lines drawn on the surface of a solid sphere.

This being inconvenient in practice, it is usual to project the points or poles on the surface of the sphere upon those of a plane, just as geographical and astronomical maps are projections from the surface of the sphere upon the plane of the paper on which the map is drawn. There are three principal projections of the sphere,--the steregraphic, orthographic, and gnomic.

The steregraphic when the eye is supposed to be placed on the surface of the sphere and the points in the hemisphere furthest from the eye are projected on the plane of the equator;
considering the point of sight or projection, the pole of the great circle on which the projection is made.

In this projection the projections of circles on the sphere are either straight lines or circles.

The orthographic where the eye is supposed to be placed at an infinite distance from the sphere. In this projection points on the surface of the sphere are projected on the plane of the equator by perpendiculars from those points to that plane.

In this case all great circles inclined to the equator are projected into ellipses on the plane of projection.

The gnomic where the eye is placed in the centre of the sphere, and the plane of projection is a plane touching the surface of the sphere.

In this projection all great circles are projected into a straight line.

From the difficulty of describing arcs of ellipses the orthographic projection is not suited to crystallographical problems.

The steregraphic is that mostly used by Professor Miller and other distinguished crystallographers, but there is some trouble in finding the centres of the arcs of great circles on the sphere of projection.

The most simple projection for most purposes is the gnomic. By either the steregraphic or gnomic projection, many problems may be very expeditionsly solved by simple geometrical con. structions.
129. Comparing (fig. 14, Plate II.) with (fig. 27, Plate IV.), we see that if we take A, the centre of the cube, for the centre of the sphere of projection, and $A o_{1}, A o_{2}, \& c ., A o_{8}$ as equal radii of that sphere,-the eight faces, $C_{1}, C_{2}, C_{3}, \& c$. , of the octahedron will each be tangent planes, touching the sphere in the eight points o_{1}, o_{2}, \&c., o_{8}. Because each of these plane faces are respectively perpendicular to $A o_{1}, A o_{2}, \& c$. , at the points $o_{1}, o_{2}, \& c$.

The projections on the faces of the octahedron will be the same as in the former case if we regard the sphere of projection as the sphere inscribed in the cube touching the cube in the points $C_{1}, C_{2}, \& c ., C_{6}$.

All the poles, therefore, of all the forms of the cubical system can therefore be projected on to the planes of the octahedron inscribed in the cube,-one octant of the sphere upon each face. In (fig. 14, Plate II.), as shown in perspective, and (fig. 33, Plate IV.), on the plane of the paper,--the equilateral triangle $C_{1} C_{2} C_{3}$ represents the gnomic projection of an octant of the sphere of projection.
$C_{1} C_{2} C_{3}$ being the projections of three poles of the cube.
Bisect $C_{1} C_{2}$ in $d_{1}, C_{1} C_{3}$ in d_{2}, and $C_{2} C_{3}$ in d_{5}.
d_{1}, d_{2}, and d_{5} are projections of the poles of three faces of the rhombic dodecahedron.

Join $C_{1} d_{5}, C_{2} d_{2}$, and $C_{3} d_{1}$ meeting in $o_{1} ; o_{1}$ is the projection of the pole of a face of the octahedron.
(Fig. 43*, Plate IV.*) $\mathbf{B}_{1}, \mathbf{E}_{1}, \mathbf{F}_{1}, \mathbf{G}_{1}, \mathbf{H}_{1}, \mathbf{K}_{1}, \mathbf{L}_{1}, \mathbf{M}_{1}, \mathbf{N}_{1}, \mathbf{P}_{1}, \mathbf{Q}_{1}$ represent the poles of nearly all the known four-faced cubes lying in the arc of the zone $d_{5} C_{3} ; \mathbf{B}_{2}, \& c$., in $C_{3} d_{2} ; \mathbf{B}_{3}, \& c$., in $C_{1} d_{2} ; \mathbf{B}_{4}, \& c$., in $C_{2} d_{5} ; \mathbf{B}_{5}$, \&c., in $C_{2} d_{5} ;$ and \mathbf{B}_{6}, \&c., in $C_{1} d_{5}$. Six poles of each four-faced cube in the octant at equal distances from C_{1}, C_{2}, and C_{3}.

Rules for finding the position of $\mathbf{B}_{1}, \mathbf{E}_{1}$, \&c., will be given hereafter.
$b_{1}, e_{1}, f_{1}, g_{1}, h_{1}, k_{1}$, and $l_{1} ; b_{2}, e_{2}, \& c ., l_{2} ;$ and $b_{3}, e_{3}, \& c ., l_{3}$, three poles of each three-faced octahedron, lying at equal distances from o_{1}, in the arcs of zones represented respectively by $o_{1} d_{5}, o_{1} d_{2}$, and $o_{1} d_{1}$.
$b_{1}, e_{1}, f_{1}, g_{1}, h_{1}, k_{1}, l_{1}, m_{1}, n_{1}, o_{1}, p_{1}$, and $q_{1} ; b_{2}, e_{2}, \& c ., q_{2} ;$ $b_{3}, e_{3}, \& c ., q_{3}$, three poles of each twenty-four-faced trapezohedron, lying at equal distances from o_{1}, in arcs of zones represented by $o_{1} C_{3}, o_{1} C_{1}$, and $o_{1} C_{2}$ respectively.

Lastly $A_{1}, B_{1}, E_{1}, F_{1}, G_{1}, H_{1}, K_{1}, L_{1}, M_{1}, N_{1}, P_{1}, Q_{1}, R_{1}, S_{1}$, $T_{1}, U_{1} ; A_{2}, B_{2}, \& c ., U_{2} ; A_{3}, B_{3}, \& c ., U_{3} ; A_{4}, B_{4}, \& c ., U_{4}$; $A_{5}, B_{5}, \& c ., U_{5} ;$ and $A_{6}, B_{6}, \& c ., U_{6}$, six poles of the six-faced octahedron; the poles of each particular six-faced octahedron being similarly situated in each of the six triangles $d_{5} 0_{1} C_{3}$, $d_{2} o_{1} O_{3}, d_{2} o_{1} C_{1}, d_{5} o_{1} C_{2}, d_{1} o_{1} C_{2}$, and $d_{1} o_{1} C_{1}$ respectively.
130. To find geometrically the position of any pole on the gnomic projection (fig. 43*, Plate IV.*).

In (fig. 44*, Plate IV.*). -Let $A C_{3}, A C_{2}$, and $A C_{1}$ be three adjacent cubical axes, rectangnlar at A.

Let $A C_{3}=1$. Take $A N$ in $A C_{1}$ produced equal to n.
$A M$ in $A C_{2}$ produced equal to m.
Join $C_{3} N, N M, M C_{3}, C_{3} C_{2}, C_{2} C_{1}$, and $C_{1} C_{3}$.
Then $C_{2} M N$ is the plane $1 m n$, and $C_{1} C_{3} C_{2}$ is the plane of the gnomic projection.

Through A draw $A G$ perpendicular, $C_{3} M$ meeting $C_{2} C_{3}$ in g, $A H$ perpendicular $C_{3} N$, cutting $C_{1} C_{3}$ in h, and $A K$ perpendicular to $C_{1} C_{2}$, cutting $C_{1} C_{2}$ in k.
h, g, and k are the projections on $C_{1} C_{2} O_{3}$ of H, G, and K. Join $N G, M H$, and $\mathrm{C}_{3} K$ in the plane NMO_{3}, meeting in F; also join $A F$. Then, as in § $117, F$ is the pole of $1 m n, G$ of $1 m \propto$, H of $1 \infty n$, and K of $\infty 1 \frac{n}{m}$.

Therefore on the plane of projection, $C_{1} C_{2} C_{3}, g$ is the projection of the pole of $1 m \infty, h$ of $1 \infty n$, and k of $\infty 1 \frac{n}{m}$; $h C_{2}$ of the line $H M, k C_{3}$ of the line $K C_{3}, g C_{1}$ of the line $G N$.
f, where $h O_{2}, k C_{3}$, and $g C_{1}$ meet, will be the pole of 1 mn . Through h, in the plane $N A C_{3}$, draw $h E$ perpendicular to $A C_{3}$.

Let angle $h A C_{3}=\lambda_{2}$. Then since angle $A H N=90^{\circ}$, angle $A N H=\lambda_{2}$.

In triangle $N A C_{3} \tan A N C_{3}=\frac{A C_{3}}{A N}$ or $\tan \lambda_{2}=\frac{1}{n}$
In triangle $A l E \tan h A E=\tan \lambda_{2}=\frac{h E}{A E}$
Hence $\frac{h E}{A E}=\frac{1}{n}$ and $h E=\frac{A E}{n}=\frac{A C_{3}-2 C_{3}}{n}=\frac{1-E C_{3}}{n}$
But by similar triangles $h E O_{3}, C_{1} A C_{3}$,
$\frac{h E}{E C_{3}}=\frac{C_{1} A}{A C_{3}}=\frac{1}{1} . \quad$ Therefore $h E=E C_{3} ;$

$$
\text { and } E C_{3}=\frac{1-E C_{3}}{n} \text { and } n E C_{3}=1-E C_{3}
$$

Whence $E C_{3}=\frac{1}{n+1}$
But by similar triangles $C_{1} A C_{3}, h E C_{3}$,

Hence $\frac{C_{1} C_{3}}{h C_{3}}=n+1$, and $C_{3} h=\frac{C_{1} C_{3}}{n+1}$
Hence h, the pole of $1 \propto n$, is found by taking the point h in $C_{1} C_{3}$, so that $C_{3} h=\frac{C_{1} C_{3}}{n+1}$

Again since $\tan \lambda_{2}=\frac{1}{n}$ and angle $h A C_{3}=\lambda_{2}$, if the angular elements be given, $C_{1} C_{3}$ is the chord of 90° and h is the point where the angle λ_{2} protracted from A meets $C_{1} C_{3}$, considering C_{3} as zero.

The chord of 90° marked as a protractor is obtainable from any mathematical instrument maker, or may be readily marked on the chord of 90° by using any form of protractor.

Similarly it may be shown that $a C_{3}=\frac{C_{2} C_{3}}{m+1}$, and that g is the point where the angle λ_{3} is marked on $C_{2} C_{3}$ as the chord of $90^{\circ}, C_{3}$ being zero; and $\tan \lambda_{3}=\frac{1}{m}$. Also $k C_{2}=\frac{C_{1} C_{2}}{\frac{m}{n}+1}, k$ being the point where the angle λ_{1} is marked on the chord of 90°, C_{2} being zero, and $\tan \lambda_{1}=\frac{m}{n}$.

Join $C_{1} g, C_{2} h$, and $O_{3} k . f$, the point where these three lines meet, is the pole of the face of the six-faced octahedron
whose angular elements are f_{3} and λ_{3}, or whose indices are 1 mn .
131. To construct a map of all the forms of the octahedral system on a face of an octahedron comprised in an octant of the sphere of projection.
(Fig. 43*, Plate IV.*) Describe any equilateral trianglo $C_{1} C_{2} C_{3}$.

Bisect $C_{1} C_{2}$ in $d_{1}, C_{1} C_{3}$ in d_{2}, and $C_{2} C_{3}$ in d_{5}.
Then C_{3} is the pole of $1 \infty \infty, C_{2}$ of $\infty 1 \infty$, and C_{1} of $\infty \infty 1$, three poles of the cube.
d_{1} is the pole of $\infty 11, d_{2}$ of $1 \propto 1$, and d_{5} of 11∞, three poles of the rhombic dodecahedron.

Join $C_{1} d_{5}, C_{2} d_{2}$, and $C_{3} d_{1}$ meeting in o. Then o is the pole of the face of the octahedron whose symbol is 111.

To place on this octant six poles of the six-faced octahedron whose indices are $1, \frac{4}{3}, 2$.

In this case $\lambda_{3}=36^{\circ} 52^{\prime}, \lambda_{2}=26^{\circ} 34^{\prime}$, and $\lambda_{1}=33^{\circ} 41^{\prime}$.
Graduate each of the lines $C_{3} d_{2}, C_{3} d_{5}, C_{1} d_{2}, C_{1} d_{1}, C_{2} d_{1}$, and $C_{2} d_{5}$, from o° to 45°; considering $C_{1} C_{2}, C_{2} C_{3}$ and $C_{1} C_{3}$ as chords of 90°, and making the three points C_{1}, C_{2}, C_{3} each zero, as described in § 132.

Let $C_{3} \mathbf{F}_{1}=36^{\circ} \quad 52^{\prime}=C_{3} \mathbf{F}_{2}=C_{1} \mathbf{F}_{3}=C_{2} \mathbf{F}_{4}=C_{2} \mathbf{F}_{5}=C_{1} \mathbf{F}_{6}$

$$
C_{3}^{\prime} \mathrm{H}_{1}^{\prime}=26^{\circ} 34^{\prime}=C_{9}^{\prime} \mathrm{H}_{2}^{\prime}=C_{1} \mathrm{H}_{3}=C_{2} \mathrm{H}_{4}^{\prime}=C_{2} \mathrm{H}_{5}=C_{1} H_{6}^{\prime}
$$

$$
C_{3}^{3} \mathbf{G}_{1}^{2}=33^{\circ} 41^{\prime}=C_{3} \mathbf{G}_{2}=C_{1} \mathbf{G}_{3}=C_{1} \mathbf{G}_{4}=C_{2} \mathbf{G}_{5}=C_{1} \mathbf{G}_{6}
$$

Then E_{1} is the intersection of $C_{1} \mathrm{~F}_{1}, C_{2} \mathrm{H}_{2}, C_{3} \mathrm{G}_{5}$

2		of $C_{1} \mathrm{H}_{1}, C_{2} \mathrm{~F}_{2}, C_{3} \mathrm{G}_{6}$
H_{3}^{2}	",	of $C_{1} G_{1}, C_{2} F_{3}, C_{3} H_{6}$
E_{4}	"	of $C_{1} \mathrm{~F}_{1}, C_{2} \mathrm{G}_{2}, C_{3} \mathrm{H}_{5}^{6}$
E_{5}	,"	of $C_{1} \mathbf{H}_{4}, C_{2} G_{3}, C_{3} \mathbf{F}$
$E_{6}{ }^{\text {j }}$	",	of $C_{1} \mathrm{G}_{4}, C_{2} \mathbf{H}_{3}, C_{3} \mathbf{F}_{6}$

$E_{1}, E_{2}, E_{3}, E_{4}, E_{5}$, and E_{6} will be six poles of the six-faced octahedron whose indices are $1, \frac{4}{3}, 2$, and angular elements $\lambda_{3}=36^{\circ} 52^{\prime}, p_{3}=68^{\circ} 12^{\prime}$. The lines of intersection are not shown in the plate.
(Fig. 43*, Plate IV.*) has marked on it the poles on the octant of a sphere of nearly all the forms of the cubical system which have been observed; all the faces whose poles lie in the same line having their poles on the sphere of projection on the same zone circle.

The angular and linear indices of every form are given in the following table.

Where p_{1}, p_{2}, and p_{3} are the polar distances of each form from the three poles of the poles of the cube, C_{1}, C_{2}, and C_{3}, θ, ϕ, and ψ the supplements of the angles of inclination over the edges of adjacent faces determined as in $\S 123,124,125$, and 126.
$\S 124,125$, and 126 show how when these angles or any two
of them are determined from observation, the angular or linear elements can be determined from them.

The linear elements have hitherto been almost universally used as a concise means of expressing any form. Their disadvantages will be explained hereafter.

The angular elements are in reality more concise, because they can express the forms they represent to any degree of accuracy which can be derived from observation.

They have also this great advantage, that by the use of angles alone they can express the relations of any form to another without determining the linear elements at all.

Thus in the following table p_{1} for any form gives the inclination of the face for which it stands to that of the adjacent face of the cube in any combination of these two forms.

Faces of all the twenty-four faced trapezohedrons lie in the same zone $C_{1} o d_{5}$. Hence the value of p_{1} for any of these faces gives the inclination of that face to that of the cube in that zone.

For instance (fig. $43 *$, Plate IV. $*$), m_{2} is the pole of a face of the twenty-four-faced trapezohedron, for which the value of $p_{3}=78^{\circ} 54^{\prime}, \lambda_{3}=11^{\circ} 19^{\prime}$, linear elements $1,5,5 ; l_{2}$ is the pole of another twenty-four-faced trapezohedron, where $p_{3}=76^{\circ} 22^{\prime}$, $\lambda_{3}=14^{\circ} 2^{\prime}$, linear elements $1,4,4$.

For $m_{2} ; p_{1}=15^{\circ} 48^{\prime}$. And for $l_{2} ; p_{1}=19^{\circ} 28^{\prime}$.
Hence $54^{\circ} 44^{\prime}-15^{\circ} 48^{\prime}=\mathrm{Om}_{2} ; 54^{\circ} 44^{\prime}-19^{\circ} 28^{\prime}=O l_{2}$; and $19^{\circ} 28^{\prime}-15^{\circ} 48^{\prime}=m_{2} l_{2}^{2}$.
Results procured by simple subtraction when the angular elements are used; but only found by retranslating the linear indices obtained from angular observations of the goniometer back again into angles, by trigonometrical formulæ.

Again, referring to (fig. 43^{*}, Plate IV.*), we see that C_{1}, $U_{3}, Q_{3}, H_{3}, \mathbf{h}_{2}, E_{2}, f_{1}, N_{1}, P_{1}, \mathbf{H}_{1}$ all lie in the same meridional zone.

The values of p_{1} for each of these forms enable us to determine the distances of these poles from each other in the zone by simple subtraction of angles.

Table of all the principal forms of the Cubical Systen.
SIX-FACED OCTAHEDRON.

	$1 m n$	Naumann.	Miller.	λ_{3}	λ_{2}	λ_{1}	p_{3}	p_{2}	p_{1}	θ	ϕ	ψ
A	$1 \frac{64}{63} 64$	$640 \frac{64}{83}$	64631	$44^{\circ} 33^{\prime}$	$0^{\circ} 54^{\prime}$	$0^{\circ} 55^{\prime}$	$89^{\circ} 72^{\prime}$	$45^{\circ} 27^{\prime}$	$44^{\circ} 33^{\prime}$	$58^{\circ} 26^{\prime}$	$0^{\circ} 54^{\prime}$	$1^{\circ} 16^{\prime}$
B	$1 \begin{array}{lll}1 & \frac{5}{4} & \frac{5}{3}\end{array}$	$\begin{array}{lll}\frac{5}{3} & 0 & \frac{5}{4}\end{array}$	543	3840	$30 \quad 58$	$36 \quad 52$	6454	$55 \quad 33$	450	1129	$11 \quad 29$	$50 \quad 12$
E	$\begin{array}{llll}1 & \frac{4}{3} & 2\end{array}$	20 -	432	$\begin{array}{lll}36 & 52\end{array}$	$26 \quad 34$	3341	$68 \quad 12$	56 9	$42 \quad 2$	155	$15 \quad 5$	$43 \quad 36$
F	$1 \begin{array}{lll}1 & \frac{4}{3} & 4\end{array}$	${ }^{4} 004$	431	3652	142	1826	7841	5358	$38 \quad 20$	$32 \quad 12$	$\begin{array}{ll}15 & 57\end{array}$	$\begin{array}{ll}22 & 37\end{array}$
G	11 15 15 1	${ }_{\frac{1}{7}}{ }^{5}$	15117	$\begin{array}{ll}36 & 15\end{array}$	$25 \quad 1$	$32 \quad 28$	$\begin{array}{ll}69 & 23\end{array}$	5624	410	1622	1622	4115
\boldsymbol{H}	$1 \begin{array}{lll}1 & \frac{3}{2} & 3\end{array}$	$30 \frac{3}{2}$	$\begin{array}{llll}3 & 2 & 1\end{array}$	3341	$18 \quad 26$	2634	7430	5741	36. 42	2147	2147	310
K	$\begin{array}{llll}1 & \frac{8}{5} & 8\end{array}$	80 - ${ }^{5}$	851	320	78	1119	$83 \quad 57$	5812	$\begin{array}{ll}32 & 31\end{array}$	3442	$25 \quad 50$	126
L	$1 \begin{array}{lll}1 & \frac{5}{3} & 5\end{array}$	$50 \quad \frac{5}{3}$	$5 \begin{array}{lll}5 & 3 & 1\end{array}$	$\begin{array}{ll}30 & 58\end{array}$	1129	$18 \quad 26$	8016	5932	3219	$27 \cdot 40$	2740	$19 \quad 28$
\boldsymbol{M}	$1{ }^{1} \frac{5}{5} 10$	$100 \frac{5}{3}$	$10 \quad 61$	$30 \quad 58$	543	$9 \quad 28$	856	5910	$31 \quad 19$	3510	$27 \quad 58$	948
N	124	402	421	$26 \quad 34$	14. 2	2634	$77 \quad 24$	$64 \quad 7$	2912	1745	$35 \quad 57$	2513
P	1210	1005	$10 \quad 51$	$26 \quad 34$	543	1119	8453	$63 \quad 33$	271	2911	3643	1014
Q	$1{ }^{1} \frac{1}{5} \frac{11}{3}$	$\frac{11}{3} 0 \frac{18}{5}$	115	$24 \quad 26$	1515	3058	76	$66 \quad 19$	2756	13	3951	2753
\boldsymbol{R}	$1 \begin{array}{llll}1 & 10 \\ \frac{10}{7} & 4\end{array}$	$40 \frac{16}{\frac{10}{7}}$	$16 \quad 74$	2338	$14 \quad 2$	2945	776	$67 \quad 0$	$26 \quad 45$	1336	4137	2548
S	$\begin{array}{llll}7 & 7 & 7\end{array}$	70	$7 \quad 31$	2312	$8 \quad 8$	$18 \quad 26$	8231	671	2419	2115	4313	$14 \quad 58$
T	$1 \begin{array}{lll}1 & 3 & 21\end{array}$	${ }_{2}^{21}$	2175	$18 \quad 26$	$13 \quad 24$	$35 \quad 32$	7716	$72 \quad 2$	2216	78	5144	$25 \quad 28$
\boldsymbol{U}	$\begin{array}{lll}1 & 4 & 8\end{array}$	804	821	142	78	$26 \quad 34$	835	764	$\begin{array}{ll}15 & 37\end{array}$	946	6126	1350

THREE-FACED OCTAHEDRON.

OCTAHEDRON,

TWENTY-FOUR-FACED TRAPEZOHEDRON.

	$1 m n$	Naumann.	Miller.	λ_{3}	λ_{2}	λ_{1}	p_{3}	p_{2}	p_{1}	θ	ϕ	ψ
b	$1{ }^{\frac{4}{3}} \frac{4}{3}$	${ }_{\frac{4}{3}} 0$	4333	$36^{\circ} 5^{\prime}{ }^{\prime}$	$36^{\circ} 52^{\prime}$	$45^{\circ} \quad 0^{\prime}$	$59^{\circ} 1^{\prime}$	$59^{\circ} \quad 1^{\prime}$	$46^{\circ} 39^{\prime}$	- $0^{\circ} 0^{\prime}$	$13^{\circ} 56^{\prime}$	$61^{\circ} 56^{\prime}$
6	$1{ }^{\frac{3}{1}} \frac{3}{2}$	$\frac{3}{7} 0 \quad \frac{3}{2}$	$3 \quad 22$	3341	3341	450	$60 \quad 59$	$60 \quad 59$	4319	00	1945	582
f	$\begin{array}{lll}1 & 2 & 2\end{array}$	201	2 lll	2634	$26 \quad 34$	450	$65 \quad 54$	$65 \quad 54$	3516	0 0	3313	$48 \quad 11$
g	1 9 ${ }^{2}$ 9	$\frac{9}{4} 0$	$\begin{array}{lll}9 & 4 & 4\end{array}$	2358	2358	450	$67 \quad 54$	$67 \quad 54$	328	$0 \quad 0$	3851	$44 \quad 12$
h	1 星 $\frac{8}{3}$	$\frac{8}{8} 0$ 景	833	$20 \quad 33$	$20 \quad 33$	$45 \quad 0$	$\begin{array}{ll}70 & 39\end{array}$	$70 \quad 39$	$27 \quad 56$	00	$45 \quad 58$	3842
k	$\begin{array}{lll}1 & 3 & 3\end{array}$	301	$\begin{array}{lll}3 & 1 & 1\end{array}$	$18 \quad 26$	1826	450	$72 \quad 27$	$\begin{array}{ll}72 & 27\end{array}$	25.14	00	$50 \quad 29$	356
l	$1 \begin{array}{lll}1 & 4 & 4\end{array}$	404	$4 \quad 11$	$14 \quad 2$	$14 \quad 2$	450	$\begin{array}{ll}76 & 22\end{array}$	$\begin{array}{ll}76 & 22\end{array}$	$19 \quad 28$	00	60 0	2716
m	155	505	$5{ }_{5}^{5} 11$	1119	1119	$45 \quad 0$	$78 \quad 54$	$78 \quad 54$	1548	00	$65 \quad 57$	2211
\boldsymbol{n}	11010	10010	$\begin{array}{llll}10 & 1 & 1\end{array}$	543	543	450	8419	8419	83	00	787	1122
0	11212	$12 \quad 0 \quad 12$	$\begin{array}{ll}12 & 1\end{array}$	446	446	450	8515	$85 \quad 15$	$6 \quad 43$	00	808	930
p	11616	$16 \bigcirc 16$	$\begin{array}{lll}16 & 1 & 1\end{array}$	$3 \quad 25$	$3 \quad 25$	450	8626	8626	53	00	82 39	78
q	14040	$40 \quad 040$	4011	126	126	450	8834	$88 \quad 34$	22	00	876	252

FOUR-FACED CUBE.

RHOMBIC DODECAHEDRON.

	$1 m n$	Naumann.	Miller.	λ_{8}	λ_{2}	λ_{1}	p_{3}	p_{2}	p_{1}	θ	ϕ	ψ
d	11∞	$\infty 0$	$1 \begin{array}{lll}1 & 0\end{array}$	$45^{\circ} \quad 0^{\prime}$	$0^{\circ} \quad 0$	$0^{\circ} 0^{\circ}$	$90^{\circ} \quad 0^{\prime}$	$45^{\circ} \quad 0^{\prime}$	$45^{\circ} \quad 0^{\prime}$	$60^{\circ} \quad 0^{\prime}$	$0^{\circ} \quad 0^{\prime}$	$0^{\circ} \quad 0^{\prime}$

CUBE.

		Naumann.	Miller.	λ_{3}	λ_{2}	λ_{1}	p_{3}	p_{2}	p_{1}	θ	ϕ	ψ
C	$1 \infty \infty$	$\infty 0 \infty$	100	$0^{\circ} 0^{\circ}$	$0^{\circ} 0^{\circ}$	$45^{\circ} \quad 0^{\prime}$	$90^{\circ} 0^{\prime}$	$90^{\circ} \quad 0^{\prime}$	$0^{\circ} \quad 0^{\prime}$	$0^{\circ} \quad 0^{\prime}$	$90^{\circ} \quad 0^{\prime}$	$0^{\circ} \quad 0^{\prime}$

132. Hemihedral or Half-symmetrical Forms of the Cubic System.

In the holohedral or perfectly symmetrical forms of the cubical system, the solid form of the crystal is bounded by the lines where any one plane or face is intersected by the adjacent planes or faces. There are, however, symmetrical forms where half the number of the holohedral faces are omitted, the planes of the remaining faces forming a solid by the intersection of the adjacent planes.

These, called hemihedral or half-symmetrical faced forms, are of two kinds,- the inclined, in which no one face is parallel to the other; and the parallel, in which the faces are parallel in pairs.
133. The inclined hemihedral forms are the tetrahedron (figs. 15 and 16, Plate III.), the twelve-faced trapezohedron (figs. 17 and 18), the four-faced tetrahedron (figs. 19 and 20), and the six-faced tetrahedron (figs. 21 and 22); these being the hemihedral forms respectively derived from the octahedron, three-faced octahedron, twenty-four-faced trapezohedron, and six-faced octahedron, half of whose faces are produced to meet each other.

There are two hemihedral forms with parallel faces,-the twelve-faced pentagon, derived from the four-faced cube (figs. 23 and 24), and the irregular twenty-four-faced trapezohedron, derived from the six-faced octahedron.

The cube and rhombic dodecahedron do not produce hemihedral forms, according to the laws of symmetry by which the preceding are formed.
184. The tetrahedron (figs. 15 and 16, Plate III.) is formed by taking half the faces of the octahedron (fig. 7, Plate I.), in the following order, $-C_{1} O_{2} C_{3}, O_{1} C_{5} C_{4}, C_{2} O_{5} O_{6}$, and $C_{4} O_{3} C_{6}$, and producing these planes to intersect in the lines $\mathrm{O}_{4} \mathrm{O}_{2}, \mathrm{O}_{2} \mathrm{O}_{5}$, $\mathrm{O}_{2} \mathrm{O}_{7}, \mathrm{O}_{4} \mathrm{O}_{5}, O_{4} \mathrm{O}_{7}$, and $\mathrm{O}_{7} \mathrm{O}_{5}$. Referring to (fig. 14, Plate II.), we see that these edges are diagonals of the square faces of the cube in which the octahedron is inscribed, one edge for each face of the cube.

The tetrahedron is therefore geometrically inscribed in the same cube in which the octahedron, from which it is derived, is also inscribed. (Fig. 16, Plate III.) shows the face of the octahedron shaded on the corresponding face of the tetrahedron.

Since $O_{2} O_{4}, O_{2} O_{5}$, and $O_{4} O_{5}$ are diagonals of equal squares, each face of the tetrahedron is an equilateral triangle, $\mathrm{O}_{2} \mathrm{O}_{4} \mathrm{O}_{5}$ (fig. 33, Plate IV.). If we bisect the three sides of this equilateral triangle in the points O_{1}, O_{2}, and C_{3}, and join these points, the equilateral triangle $C_{1} C_{2} O_{3}$ will be a face of the octahedron.

If, therefore, we describe an equilateral triangle (fig. 33, Plate IV.), having each of its sides equal $\mathrm{O}_{4} \mathrm{O}_{5}$, (fig. 27, Plate IV.), four such triangles joined together will form the net of a tetrahedron which may be inscribed in the cube, each of whose faces equal the square $O_{1} O_{4} O_{8} O_{5}$ (fg. 27, Plate IV.).

Besides the tetrahedron just described, another in all respects similar and equal to the former, except as regards its position in the cube, may be formed by producing the four faces of the octahedron $C_{1} C_{2} C_{5}, C_{1} C_{3} C_{4}, C_{2} C_{3} C_{6}$, and $C_{5} C_{4} C_{6}$ (omitted in the former case), to meet each other. It is customary to call one of these tetrahedrons the positive, and the other the negative. Crystals of the following minerals have faces parallel to those of the tetrahedron :-

Blende (sulphuret of zinc), boracite, diamond, eulytine (bismuth blende), fahlerz (grey copper), pharmacosiderite (arseniate of iron), rhodizite, tennantite, and tritonite.

Naumann's symbol for the tetrahedron is $\frac{O}{2}$, Miller's $\kappa 111$.
135. The twelve-faced trapezohedron is a half-symmetrical form with inclined faces derived from the three-faced octahedron, bounded by twelve equal and similar trapezohedrons (figs. 17 and 18, Plate III.). It is also called the deltoidal dodecahedron, the trapezoidal dodecahedron, and the hemi-tri-octahedron.

It is formed by producing the three faces of the three-faced octahedron corresponding to each face of the octahedron which are produced to form the tetrahedron, to form a solid by their intersection with each other.

Thus, comparing (figs. 17 and 18, Plate III.), with (fig. 6, Plate I.), the three faces meeting respectively in o_{1}, o_{3}, o_{0}, and o_{8} of the three-faced octahedron, are produced to meet in the points W_{2}, W_{4}, W_{5}, and W_{7}, making, by their intersections, a twelve-faced trapezohedron bounded by twelve equal and similar trapeziums, $W_{2} C_{1} o_{1} C_{3}, W_{4} C_{1} o_{1} C_{2}$, \&c.

If we call this the positive twelve-faced trapezohedron, the negative will be formed by the twelve faces of the three-faced octahedron which meet in groups of three in the points o_{2}, o_{4}, o_{5}, and o_{7}.
To obtain a face of the twelve-faced trapezohedron geometrically from the three-faced octahedron from which it is derived.

Describe the (fig. 29, Plate IV.), as previously shown in §35, for determining the face of the three-faced octahedron. Produce $O_{1} A$ to O_{6}, and $O_{1} D_{5}$ to O_{5}. Take $A O_{6}=D_{5} O_{5}=C_{1} A$, Join $C_{6} O_{5}$ and $A O_{5}$,

Produce $M d_{5}$ to meet $A O_{5}$ in W_{5}. Join $C_{6} W_{5}$.

Then (fig. 32, Plate IV.) $o_{1} C_{2} C_{3}$ being a face of the threefaced octahedron, bisect $C_{2} O_{3}$ in d_{5}. Join $o_{1} d_{5}$, and produce it to W_{5}, making $o_{1} d_{5} W_{5}=o_{1} d_{5} W_{5}$ (fig. 29, Plate IV.). Join $C_{2} W_{5}$ and $O_{3} W_{5}$.

Then the trapezium $o_{1} O_{3} W_{5} O_{2}$ is a face of the twelve-faced trapezohedron derived from the three-faced octahedron whose face is $o_{1} C_{2} O_{3}$.

Twelve of these trapeziums form a net for the twelve-faced trapezohedron which can be inscribed in the cube whose faces are equal to the square $O_{1} O_{4} O_{8} O_{5}$ (fig. 27, Plate IV.).

The faces of the three-faced octahedron are shaded on those of the twelve-faced trapezohedron (fig. 18, Plate III.).

The twelve-faced trapezohedron derived from the three-faced octahedron 112 , whose symbols are 20 Naumann, 122 Miller, and $a^{\frac{1}{2}}$ Brooke; whose symbols are $\frac{1}{2}\left(\begin{array}{ll}1 & 2\end{array}\right)$; $\frac{2 O}{2}$ Naumann, к 122 Miller, $\frac{1}{2}\left(a^{\frac{1}{2}}\right)$ Brooke, occurs parallel to faces of crystals of blende, diamond, and pharmacosiderite.

One derived from the three-faced octahedron $11 \frac{3}{2}$, $\frac{5}{2} O$ Naumann, 233 Miller, and $a^{\frac{2}{3}}$ Brooke, whose symbols are respectively $\frac{1}{2}\left(11 \frac{3}{3}\right) ; \frac{\frac{3}{2} O}{2} ; \kappa 233$; and $\frac{1}{2}\left(a^{\frac{2}{3}}\right)$, occurs parallel to faces of crystals of fahlerz.
136. The three-faced tetrahedron is a half-symmetrical form, with inclined faces derived from the twenty-four-faced trapezohedron. It is bounded by twelve equal and similar isosceles triangles (figs. 19 and 20, Plate III.).

It is also called the trigonal dodecahedron, hemi-icositetrahedron, triakis-tetrahedron, pyramidal tetrahedron, and kuproid.

It is formed by producing the three faces of the twenty-fourfaced trapezohedron, corresponding to each face of the octahedron which are produced to form the tetrahedron, to form a solid by their intersection.

Thus, comparing (figs. 19 and 20, Plate III.) with (fig. 4, Plate I.), the three faces of the twenty-four-faced trapezohedron, meeting respectively in o_{1}, o_{3}, o_{6}, and o_{8} (fig. 4), are produced to meet in the points O_{2}, O_{4}, O_{5}, and O_{7} (figs. 19 and 20, Plate III.), making by their intersections a three-faced tetrahedron, bounded by twelve equal and similar isosceles triangles, $\mathrm{O}_{4} \mathrm{O}_{2} \mathrm{o}_{1}, \mathrm{O}_{4} \mathrm{O}_{5} \mathrm{o}_{1}$, \&c.

If we call this the positive three-faced octahedron, the. negative will be formed by the twelve faces of the twenty-four-faced trapezohedron which meet in groups of three in the points o_{2}, o_{4}, o_{5}, and o_{7}.

To obtain a face of the three-faced tetrahedron geometrically from the twenty-four-faced trapezohedron from which it is derived. Describe the (fig. 31, Plate IV.) as previously constructed, § 61, for determining a face of the twenty-four-faced trapezohedron. Produce $O_{1} A$ to $O_{6}, O_{1} D_{5}$ to O_{5}; make $A C_{6}$ $=D_{5} O_{5}=A C_{1}$. Join $C_{6} O_{5}, A O_{5}$. Then it will be found that $O_{1} d_{5}$ produced will cut $C_{6} O_{5}$ in O_{5}.
Let $O_{1} d_{1} o_{1} d_{2}$ (fig. 39) be the face of the twenty-four-faced trapezohedron derived from (fig. 31, Plate IV.).

Produce $o_{1} d_{2}$ to O_{2}, and $O_{1} d_{1}$ to O_{4}, making $o_{1} d_{2} O_{2}$ and $o_{1} d_{1} O_{4}$ equal to $o_{1} d_{5} O_{5}$ (fig. 31). Join $O_{4} O_{2}$; this line will pass through O_{1}.

Then $O_{4} \mathrm{O}_{2} O_{1}$ is a face of the three-faced octahedron derived from that of the twenty-four-faced trapezohedron whose face is $C_{1} d_{1} o_{1} d_{2}$.

Twelve of these isosceles triangles form a net for the threefaced tetrahedron which can be inscribed in the cube whose faces are equal to the square $O_{1} O_{4} O_{8} O_{5}$ (fig. 27, Plate IV.).

The faces of the twenty-four-faced trapezohedron are shaded on those of the three-faced tetrahedron (fig. 20, Plate IV.).

The following curious reciprocal relations may be observed between the perfectly symmetrical and half-symmetrical forms of the three-faced octahedron and the twenty-four-faced trapezohedron.

The hemihedral form of the three-faced octahedron is bounded by trapeziums similar to the faces of the twenty-four-faced trapezohedron.

The hemihedral form of the twenty-four-faced trapezohedron is bounded by isosceles triangles like the faces of the threefaced cube.

The three-faced octahedron is formed by placing a threefaced pyramid of equal isosceles triangles on each of the equilateral triangular faces of the regular octahedron as bases. The three-faced tetrahedron is formed in like manner by placing a three-faced pyramid of equal isosceles triangles on each of the equilateral triangular faces of the regular tetrahedron.

The following three-faced tetrahedrons, having faces of crystals parallel to them, have been observed in nature :-
$\frac{1}{2}\left(1 \frac{3}{2} \frac{3}{2}\right) ; \frac{\frac{3}{2} O \frac{3}{2}}{2}$ Naumann, к 233 Miller, $a^{\frac{3}{2}}$ Brooke; in tennantite.
$\frac{1}{2}(122) ; \frac{202}{2}$ Naumann, $\kappa 112$ Miller, a^{2} Brooke; in boracite, eulytine, fahlerz, and tennantite.
$\frac{1}{2}(133) ; \frac{3 O 3}{2} ; \kappa 113 ; a^{3}$; in blende and fahlerz,
$\frac{1}{2}(144) ; \frac{404}{2} ; \kappa 114 ; a^{4}$; in blende.
$\frac{1}{2}(155) ; \frac{505}{2}$; к 115 ; a^{5}; in blende.
137. The six-faced tetrahedron is a half-symmetrical form with inclined faces derived from the six-faced octahedron. It is bounded by twenty-four equal and similar scalene triangles (figs. 21 and 22, Plate III.).

It is also called the hemi-hex-octahedron, hexakis-tetrahedron, and boracitoid.

It is formed by producing the six faces of the six-faced octahedron, corresponding to each face of the octahedron which are produced to form the tetrahedron, to form a solid by their intersection. Thus, comparing (figs. 21 and 22, Plate III.) with (fig. 3, Plate I.), the six faces of the six-faced octahedron, meeting respectively in o_{1}, o_{3}, o_{6}, and o_{8} (fig. 3, Plate I.), are produced to meet in the points W_{2}, W_{4}, W_{5}, and W_{7} (figs. 21 and 22, Plate III.), making by their intersections a six-faced tetrahedron, bounded by 24 equal and similar scalene triangles, $o_{1} C_{1} W_{2}, o_{1} C_{3} W_{2}$, \&c.

If we call this the positive six-faced tetrahedron, the negative will be formed by the twenty-four faces of the six-faced octahedron which meet in groups of six in the points o_{2}, o_{4}, o_{5}, and o_{7} (fig. 3, Plate I.). To obtain geometrically a face of the six-faced tetrahedron from the six-faced octahedron from which it is derived, describe the (fig. 35, Plate IV.), as previously constructed, $\S 68$, for determining a face of the six-faced octahedron. Produce $O_{1} A$ to $C_{6}, O_{1} D_{5}$ to O_{5}; make $A C_{6}=$ $D_{5} O_{5}=O_{1} A$. Join $C_{6} O_{5}$ and $A O_{5}$. Produce $N_{O_{1}} d_{5}$ to meet $A O_{6}$ in W_{5}, and join $C_{6} W_{5}$.

Then (fig. 36, Plate IV.) let $C_{1} 0_{1} d_{2}$ be a face of the six-faced octahedron constructed as in $\S 69$.

Produce $o_{1} d_{2}$ to W_{2} and make $o_{1} d_{2} W_{2}=o_{1} d_{5} W_{5}$, fig. 35 .
Join $C_{1} W_{2}$. Then the scalene triangle $o_{1} W_{2} C_{1}$ is a face of the six-faced tetrahedron derived from the six-faced octahedron whose face is $C_{1} o_{1} d_{2}$. Twenty-four such scalene triangles form a net for the six-faced tetrahedron which can be inscribed in the cube whose faces are equal to the square $O_{1} O_{4} O_{8} O_{5}$ (fig. 27, Plate IV.). The faces of the six-faced octahedron are shaded on those of the six-faced tetrahedron (fig. 22, Plate III.).

The following six-faced tetrahedrons, having faces of crystals parallel to them, have been observed in nature:

$$
\frac{1}{2}\left(1 \frac{3}{2} 3\right) ; \frac{3 O \frac{3}{2}}{2} \text { Naumann; } \kappa 321 \text { Miller ; } \frac{1}{2}\left(b^{1} b^{\frac{1}{2}} b^{\frac{1}{3}}\right)
$$

Brooke; in crystals of the diamond,
$\frac{1}{2}\left(1 \frac{5}{3} 5\right)$ Naumann $; \frac{5 O \frac{5}{3}}{2} ; \kappa 531$ Miller $; \frac{1}{2}\left(b^{1} b^{\frac{1}{3}} b^{\frac{1}{5}}\right)$
Brooke; in crystals of boracite.
By the construction fig. 35 , the ratio $\frac{A W_{5}}{A O_{5}}$ may be readily determined by plain trigonometry, just as the ratio $\frac{A o_{1}}{A O_{1}}$ was in § 73.

It can also be readily determined by geometry of three dimensions. For (fig. 22, Plate III.) W_{2} is a point in each of the three planes $C_{1} o_{1} d_{2}, O_{3} o_{1} d_{2}, C_{1} o_{3} d_{3}$.

Now the equation to the plane $\dot{C}_{1} o_{1} d_{2}$ referred to rectangular co-crdinates, $A C_{1}, A C_{2}, A C_{3}$, is

$$
\begin{equation*}
\frac{x}{m}+\frac{y}{n}+\frac{z}{1}=1 \tag{A}
\end{equation*}
$$

To the plane $C_{3} o_{1} d_{2}$ is $\frac{x}{1}+\frac{y}{n}+\frac{z}{m}=1$
To the plane $C_{1} 0_{3} d_{3}$ is $-\frac{x}{n}-\frac{y}{m}+\frac{z}{1}=1 \quad$ (C). (See fig. $31 *$, and fig. 32^{*}, Plate IV.*)
And since x, y, z will be the same for the point W_{2} where these planes meet,
(A) $-(\mathrm{C}) \quad x\left(\frac{1}{m}+\frac{1}{n}\right)+y\left(\frac{1}{n}+\frac{1}{m}\right)=0$.

Therefore $x=-y$.
Also (A-B) $\quad x\left(\frac{1}{m}-1\right)+z\left(1-\frac{1}{m}\right)=0$.

$$
x=-y=z=\frac{\operatorname{And} x=z .}{1+\frac{1}{m}-\frac{1}{n}}
$$

But $A W_{2}^{2}=x^{2}+y^{2}+z^{2}=\frac{3}{\left(1+\frac{1}{m}-\frac{1}{n}\right)^{2}}$
And $A W_{2}=\frac{\sqrt{3}}{1+\frac{1}{m}-\frac{1}{n}}=\frac{A O_{1}}{1+\frac{1}{m}-\frac{1}{n}}$
Again, let ω be the angle which the normals of the faces $C_{1} o_{1} d_{2}, C_{1} \sigma_{3} d_{3}$ make with each other, or $180^{\circ}-\omega$ be the angle of inclination of the two faces of the six-faced tetrahedron (fig. 21, Plate III.), over the edge $C_{1} W_{2}$.

Then since $m n 1$ is the symbol of $C_{1} o_{1} d_{2}$, and $-n-m 1$ that of $\quad C_{1} o_{3} d_{3}$,

$$
\cos \omega=\frac{1-\frac{2}{m n}}{1+\frac{1}{m^{2}}+\frac{1}{n^{2}}}(\text { See § 107.) }
$$

Or by $\S 110$,

$$
\begin{aligned}
\cos \omega & =-\cos p_{2} \cos p_{3}-\cos p_{2} \cos p_{3}+\cos p_{1} \cos p_{1} \\
& =\cos ^{2} p_{1}-2 \cos p_{2} \cos p_{3}
\end{aligned}
$$

Which may be computed at once by Byrne's dual logarithms, or thus adapted for ordinary logarithmic computation.
$\cos \omega=\cos ^{2} p_{1}\left\{1-\frac{2 \cos p_{2} \cos p_{3}}{\cos ^{2} p_{1}}\right\}$
Let $\tan a=\frac{2 \cos p_{2} \cos p_{3}}{\cos ^{2} p_{1}}=\frac{\cos p_{2} \cos p_{3}}{\cos 60 \cos ^{2} p_{1}}$
Then $\cos \omega=\cos ^{2} p_{1}(1-\tan a)=\frac{\cos ^{2} p_{1} \cos (a+45)^{\circ}}{\cos a \sin 45^{\circ}}$
138. Limits of the Form of the Six-faced Tetrahedron.

As m and n approach in magnitude to unity, the six-faced tetrahedron approximates to the tetrahedron. When $m=n=1$, the six-faced tetrahedron becomes the tetrahedron, the points W_{1}, W_{2}, W_{5}, and W_{7} (fig. 21, Plate III.) coincide with the points O_{1}, O_{2}, O_{5}, and O_{7} (fig. 15). $C_{1} W_{4}$ and $C_{1} W_{2}$ become the straight line $\mathrm{O}_{2} \mathrm{O}_{4}$, \&c., and the six faces round each point o_{1}, o_{3}, o_{6}, and o_{8} lie in the same plane.

As m and n increase in magnitude greater than unity, and also in equality to each other, the six-faced octahedron approximates to the cube. When m and n are both infinitely great, it coincides with it. In this case each of the four faces which meet in the six points $C_{1}, C_{2}, C_{3}, \& c ., C_{6}$, lie in the same plane. As m approaches to unity, while n increases in magnitude, the six-faced tetrahedron approximates to the rhombic dodecahedron. When $m=1$ and $n=\infty$ it becomes the rhombic dodecahedron, and the two faces which lie on each side of the twelve lines $W_{2} o_{1}, W_{4} o_{1}, W_{5} 0_{1}, \& c$., lie in the same plane, and the $C o$ and $O W$ become equal.

When m equals unity, while n remains finite, the six-faced tetrahedron becomes the twelve-faced trapezohedron, and the faces on each side of the twelve edges $W_{2} O_{1}$ lie in the same plane, but the edges $C o$ and $O W$ are not equal.

When m and n are equal to each other, both finite and greater than unity, the six-faced tetrahedron becomes the three-faced tetrahedron, and the faces on each side the twelve lines $C_{1} o_{1}$, $C_{3} 0_{1}, C_{2} 0_{1}, \& c$., lie in the same plane. W coincides with O and $W C W$ becomes a straight line. When m remains finite, and n becomes infinite, the six-faced octahedron becomes the fourfaced cube, and its scalene triangles become isosceles.

From the above it follows that the cube, rhombic dodeca-
hedron, and four-faced cube, which have no hemihedral forms with inclined faces, are limiting forms of the six-faced tetrahedron.

Also that all the formulm of the tetrahedron, three-faced tetrahedron, and twelve-faced trapezohedron may be derived from those of the six-faced octahedron by giving the proper values to m and n.
139. Table showing the symbols and formulæ of the halfsymmetrical forms which are not included in the table § 131, for the holohedral forms. The letters refer to holohedral forms, § 131 .

SIX-FAOED OCTAHEDRON.

	Naumann.	Miller.	Brooke.	Ratio $\frac{A W}{A O}$	Angle ω.
$H_{\frac{1}{2}}\left(1 \frac{3}{7} 3\right)$	$\frac{3 O \frac{3}{4}}{2}$	c 321	$\frac{1}{2}\left(b^{1} b^{\frac{1}{2}} b^{\frac{1}{3}}\right)$	3	
$L_{\frac{1}{2}\left(1 \frac{5}{3} 5\right)}$		к 531	$\frac{1}{2}\left(b^{1} b^{\frac{1}{3}} b^{\frac{1}{5}}\right)$	$\frac{5}{7}$	57
THREE-FACED TETRAHEDRON.					
e $\frac{1}{2}\left(1 \frac{3}{2} \frac{3}{7}\right)$	$\frac{\frac{3}{2} \mathrm{O}_{2}}{2}$	$\kappa 223$	$\frac{1}{2}\left(a^{\frac{3}{2}}\right)$	1	$86^{\circ} 38^{\prime}$
$f_{\frac{1}{2}}\left(\begin{array}{l}12\end{array}\right)$	$\frac{202}{2}$	$\kappa 112$	$\frac{1}{2}\left(a^{2}\right)$	1	$70 \quad 32$
$k \frac{1}{8}(133)$	$\frac{303}{2}$	$\kappa 113$	$\frac{1}{4}\left(a^{3}\right)$	1	$50 \quad 29$
$l \div(144)$	$\frac{404}{2}$	$\kappa 114$	$\frac{1}{2}\left(a^{4}\right)$	1	$38 \quad 57$
$m \pm(155)$	$\frac{505}{2}$	$\kappa 115$	$\frac{1}{8}\left(a^{5}\right)$	1	3135
TWELVE-FACED TRAPEZOHEDRON.					
f $\frac{1}{2}\left(11 \frac{3}{7}\right)$	$\frac{3}{3} 0$	$\times 233$	$\frac{1}{2}\left(a^{\frac{3}{3}}\right)$	$\frac{3}{4}$	$97^{\circ} 51^{\prime}$
$\mathrm{h} \frac{1}{2}\left(\begin{array}{lll}1 & 1\end{array}\right)$	$\frac{20}{2}$	к 112	$\frac{1}{2}\left(a^{\frac{1}{2}}\right)$	$\frac{3}{8}$	$90 \quad 0$
TETRAHEDRON.					
0 - $\frac{1}{8}\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$	$\frac{0}{2}$	$\kappa 111$	$\frac{1}{2}\left(a^{1}\right)$	1	$109^{\circ} 28^{\prime}$

140. The pentagonal dodecahedron is a half-symmetrical form with parallel faces derived from the four-faced cube. It
is bounded by twelve equal and similar pentagons. These pentagons are, except in one species of the pentagonal dodecahedron, irregular (figs. 23 and 24, Plate III.) ; four edges or sides of the pentagon being equal, and the fifth unequal. When the five edges are equal, the pentagonal dodecahedron is called the regular pentagonal dodecahedron, and is one of the five Platonic bodies.

It is also called the hemi-hexa-tetrahedron and pyritoid.
It is formed from the four-faced cube by taking three out of the six faces (fig. 2, Plate I.) which meet in the points n_{1}, o_{2}, \&c., o_{8}; taking the faces alternately and producing them to form by their intersections a solid by twelve pentagonal faces.

Thus the faces $C_{1} o_{1} o_{4}, C_{1} o_{2} o_{3}, C_{2} o_{1} o_{5}, C_{2} o_{4} o_{8}, C_{3} o_{1} o_{2}, C_{3} o_{5} o_{6}$, $\dot{C}_{4} o_{2} o_{6}, C_{4} o_{3} o_{7}, C_{5} o_{4} o_{3}, O_{5} o_{7} o_{8}, O_{6} o_{5} o_{8}$, and $C_{6} o_{6} o_{7}$ are produced to form the positive pentagonal dodecahedron; the twelve remaining faces to form the negative pentagonal dodecahedron. The faces so produced meet in twenty-four equal edges $o_{1} \delta_{1}$, $o_{1} \delta_{2}$, \&c. (figs. 23 and 24, Plate III.); and six other edges, but unequal to the former $\delta_{1} \delta_{9}, \delta_{2} \delta_{4}$, \&c.

To obtain a face of the pentagonal dodecahedron geometrically from that of the four-faced cube from which it is derived (fig. 37, Plate IV.), being described•as in §53. Produce $C_{1} d_{1}$ to meet $D_{1} C_{2}$ in δ_{1}.

Describe $C_{1} 0_{1} 0_{4}$ as in $\S 54$, a face of the four-faced cubo (fig. 34, Plate IV.). Bisect $o_{1} 0_{4}$ in d_{1}. Produce $C_{1} d_{1}$ to δ_{1}, making $C_{1} d_{1} \delta_{1}=C_{1} d_{1} \delta_{1}$ (fig. 37). Join $o_{1} \delta_{1}$ and $o_{4} \delta_{1}$. Through C_{1} draw $\delta_{4} C_{1} \delta_{2}$ parallel to $o_{1} 0_{4}$.

Then (fig. 34) take $C_{1} \delta_{2}$ and $C_{1} \delta_{4}$ each equal $C_{2} \delta_{1}$ (fig. 37). Join $o_{4} \delta_{4}$ and $o_{1} \delta_{2}$.

Then $\delta_{4} \delta_{2} o_{1} \delta_{1} o_{4}$ is a face of the pentagonal dodecahedron derived from the four-faced cube whose face is $C_{1} o_{4} O_{1}$.

Twelve such pentagonal faces form a net for the pentagonal dodecahedron which can be inscribed in the cube whose faces are equal to the square $O_{1} O_{4} O_{8} O_{5}$ (fig. 27, Plate IV.).

The faces of the four-faced cube are shaded on those of the pentagonal dodecahedron (fig. 24, Plate IV.).

The following pentagonal dodecahedrons, having faces of crystals parallel to them, have been observed in nature:-
$\frac{1}{2}\left[1 \frac{\mathrm{~s}}{4} \infty\right] ; \frac{\infty O \frac{\frac{5}{4}}{4}}{2}$ Naumann; $\pi 540$ Miller ; $\frac{1}{2} l^{\frac{5}{4}}$ Brooke, in pyrite.

$$
\begin{aligned}
& \frac{1}{2}\left[1 \frac{4}{3} \infty\right] ; \frac{\infty O \frac{4}{3}}{2} ; \pi 430 ; \frac{1}{2} b^{\frac{4}{3}} \text {, in pyrite. } \\
& \frac{1}{2}\left[1 \frac{3}{2} \infty\right] ; \frac{\infty O \frac{3}{2}}{2} ; \pi 320 ; \frac{1}{2} b^{\frac{3}{2}}, \text { in pyrite, }
\end{aligned}
$$

$\frac{1}{2}[12 \infty] ; \frac{\infty O 2}{2} ; \pi 210 ; \frac{1}{2} b^{2}$, in cobaltine, cubane, fahlerz, gersdorfitte, and pyrite.
$\frac{1}{2}[13 \infty] ; \frac{\infty O 3}{2} ; \pi 310 ; \frac{1}{2} l^{3}$, in hauerite, pyrite, and sal ammoniac.
$\frac{1}{2}[14 \infty] ; \frac{\infty O 4}{2} ; \pi 410 ; \frac{1}{2} b^{4}$, in cobaltine and fahlerz.
141. Platonic bodies.-There are five solid bodies described by the ancient geometers as regular solids. From their mathematical properties having been investigated by Plato and his followers, they are called the Platonic bodies. They have all their faces, edges, and angles, whether plane or solid, equal for each body.

They are the tetrahedron, bounded by four equal faces, each being an equilateral triangle; the cube, bounded by six equal squares; the octahedron, bounded by eight equal faces, each being an equilateral triangle; the pentagonal dodecahedron, bounded by twelve equal and equilateral pentagons; and the icosahedron, by twenty equal faces, each being an equilateral triangle.

The first three, described by Plato himself, have been observed in natural crystals. The last two, described after his death, have not been observed in nature.

The regular pentagonal dodecahedron is that particular case of the pentagonal dodecahedron, where the unequal edge, such as $\delta_{2} \delta_{4}$ (fig. 23, Plate III.), is equal to the other four $\delta_{2} o_{1}, o_{1} \delta_{1}$, $\delta_{1} 0_{4}$, and $o_{4} \delta_{4}$.

In this case $m=\cot \lambda_{3}=\frac{1+\sqrt{5}}{2}=1 \cdot 618034$,
but $\cot 31^{\circ} 43^{\prime}=1 \cdot 618085$.
Hence $\lambda_{3}=31^{\circ} 43^{\prime}$ true to minutes.
The value of m is generally determined by continued fractions.

Thus $m=\frac{34}{21}=1 \cdot 619046$ and $\cot 31^{\circ} 42^{\prime}=1 \cdot 61914$

$$
\begin{array}{ll}
m=\frac{13}{8}=1 \cdot 625 & \cot 31^{\circ} 36^{\prime}=1 \cdot 62548 \\
m=\frac{8}{6}=1 \cdot 6, & \cot 32^{\circ} 0^{\prime}=1 \cdot 60033
\end{array}
$$

The regular icosahedron is derived from the particular pentagonal dodecahedron in which the edge $\delta_{4} \delta_{2}=$ a line joining the points δ_{1} and δ_{2}. In this case

$$
m=\cot \lambda_{3}=\frac{3+\sqrt{5}}{2}=2 \cdot 61803=\cot 20^{\circ} 54^{\prime}
$$

where the ratio for m expressed in its lowest terms is $m=\frac{34}{13}$.
In this particular pentagonal dodecahedron each solid angle
at $o_{1}, o_{2}, \& c$. ., o_{8}, is cut off through the lines $\delta_{1} \delta_{2}, \delta_{2} \delta_{5}$, and $\delta_{5} \delta_{1}$, \&c., forming a solid bounded by twenty equilateral triangles,-eight being parallel to the faces of the octahedron inscribed in the dodecahedron, and the remaining twelve faces of the pentagonal dodecahedron.

Ozonam, in his Mathematical Recreations, remarks that "The ancient geometricians made a great many geometrical speculations respecting these bodies ; and they form almost the whole subject of the last books of Euclid's Elements. They were suggested to the ancients by their believing that these bodies were endowed with mysterious properties, on which the explanation of the most secret phenomena of nature depended."
142. The irregular twenty-four-faced trapezohedron is a halfsymmetrical form with parallel faces derived from the six-faced octahedron. It is called the irregular twenty-four-faced trapezohedron because its trapezoidal faces have only two equal edges, and to distinguish it from the twenty-four-faced trapezohedron, which is a holohedral form and has the four edges of its trapezoidal faces equal in pairs.

It is bounded by twenty-four irregular trapeziums (figs. 25 and 26, Plate II.).

It is also called the hemi-octakis-hexahedron, the trapezoidal icosi-tetrahedron, the dyakis dodecahedron, the diploid, and the diplopyritoid.

It is formed from the six-faced octahedron by taking three out of the six faces which meet in $o_{1}, o_{2}, \& c ., o_{8}$ (fig. 31, Plate I.), and producing them to meet each other and form a solid bounded by twenty-four irregular trapeziums.

Thus (fig. 8 , Plate I.) the twenty-four faces $C_{1} o_{1} d_{1}, C_{2} o_{1} d_{5}$, $O_{3} o_{1} d_{2}, C_{2} o_{4} d_{8}, O_{1} o_{4} d_{1}, C_{3} o_{4} d_{4}, \& c$., are produced to meet in the points $\delta_{1}, \delta_{2}, \& c$. ., δ_{12} (fig. 25, Plate III.), to form the positive irregular twenty-four-faced trapezohedron.

The remaining twenty-four-faces if produced will form the negative trapezohedron.

To obtain a face of the irregular twenty-four-faced trapezohedron geometrically from that of the six-faced octahedron from which it is derived.-Describe (fig. 35, Plate IV.), as previously constructed for finding a face of the six-faced octahedron, § 68 and $\S 137$. Join $O_{2} N$ cutting $C_{1} d_{1}$ produced in δ_{1}. Let $C_{2} 0_{1} d_{5}$ (fig. 38, Plate IV.) be a face of the six-faced octahedron. Produce $C_{2} d_{5}$ to δ_{5}, and make $C_{2} d_{5} \delta_{5}$, fig. 38, $=C_{1} d_{1} \delta_{1}$ (fig. 35). Join $o_{1} \delta_{5}$, on base $C_{2} o_{1}$, describe the triangle $C_{2} \delta_{1} o_{1}$, having $C_{2} \delta_{1}=C_{2} \delta_{1}$ fig. 35, and $o_{1} \delta_{1}=o_{1} \delta_{5}$ fig. 38.
$O_{1} \delta_{5} C_{2} \delta_{1}$ will be a face of the irregular twenty-four-faced trapezohedron, and twenty-four such faces will form a net for the same, which can be inscribed in a cube whose faces are equal to the square $O_{1} O_{5} O_{8} O_{4}$ (fig. 27, Plate IV.).

The faces of the six-faced octahedron are shaded on those of the irregular twenty-four-faced trapezohedron in (fig. 26, Plate III.).

The following irregular twenty-four-faced trapezohedrons, having faces of crystals parallel to them, have been observed in nature.
$\frac{1}{2}\left[1 \frac{\frac{5}{4}}{4} \frac{6}{3}\right] ; \frac{\frac{5}{3} O \frac{5}{4}}{2}$ Naumann ; $\pi 543$ Miller ; $b^{\frac{1}{5}} b^{\frac{1}{4}} b^{\frac{1}{5}}$ Brooke, in crystals of pyrite.
$\frac{1}{2}\left[1 \frac{4}{3} 2\right] ; \frac{2 O \frac{4}{3}}{2} ; \pi 432 ; b^{\frac{1}{4}} b^{\frac{1}{3}} b^{\frac{1}{2}}$, in linnéite.
$\frac{1}{2}\left[1 \frac{15}{11} \frac{15}{7}\right] ; \frac{\frac{15}{7} O \frac{15}{11}}{2} ; \pi 15117 ; b^{\frac{1}{15}} b^{\frac{1}{11}} b^{\frac{1}{7}}$, in linnéite.
$\frac{1}{2}\left[1 \frac{3}{2} 3\right] ; \frac{3 O \frac{3}{2}}{2} ; \pi 321 ; b^{\frac{1}{3}} b^{\frac{1}{2}} b 1$, in cobaltine, hauerite, and pyrite.
$\frac{1}{2}\left[1 \frac{3}{2} 5\right] ; \frac{5 O \frac{5}{3}}{2} ; \pi 531 ; b^{\frac{1}{5}} b^{\frac{1}{3}} b^{1}$, in pyrite.
$\frac{1}{2}\left[1 \frac{5}{3} 10\right] ; \frac{10 O \frac{5}{3}}{2} ; \pi 1061 ; b^{\frac{1}{10}} b^{\frac{1}{6}} b^{1}$, in pyríte.
$\frac{1}{2}[124] ; \frac{4 O 2}{2} ; \pi 421 ; b^{\frac{1}{4}} b^{\frac{1}{2}} b^{1}$, in pyrite.
$\frac{1}{2}[1510] ; \frac{1005}{2} ; \pi 1051 ; b^{\frac{1}{10}} b^{\frac{1}{8}} b^{1}$, in pyrite.
143. Let μ be the supplement of the angle of adjacent faces over the edges, such as $C_{1} \delta_{2}, C_{2} \delta_{1}, C_{3} \delta_{5}$, \&c.
ν that over the edges $o_{1} \delta_{1}, o_{1} \delta_{5}, o_{1} \delta_{2}, \& c$.
Then μ is the inclination of normal of face $O_{2} 0_{1} d_{5}$ to that of $C_{2} 0_{4} d_{8}$, fig. 26, Plate III., but indices of $C_{2} o_{1} d_{5}$ are $m 1 n$, and of $C_{2} O_{4} d_{8} \bar{m} 1 n$ (fig. 31*, Plate IV.*).

Hence $\cos \mu=\frac{-\frac{1}{m^{2}}+\frac{1}{1}+\frac{1}{n^{2}}}{\frac{1}{m^{2}}+\frac{1}{n^{2}}+1}$
Also ν is the inclination of normal of face $C_{2} d_{5} O_{1}$ to that of $C_{1} d_{1} a_{1}$ (fig. 26 Plate III.), but indices of $C_{2} d_{5} o_{1}$ are $m 1 n$, and of $C_{1} d_{1} o_{1}, n m 1$ (fig. 81*, Plate IV.*).

Hence $\cos \nu=\frac{\frac{1}{m n}+\frac{1}{m}+\frac{1}{n}}{\frac{1}{m^{2}}+\frac{1}{m^{2}}+1}$

Or, expressing μ and ν in terms of the polar distances $C_{2} O_{1} d_{5}$ $=p_{2} p_{1} p_{3}$ and $C_{2} o_{4} d_{5}=-p_{2} p_{1} p_{3}$.

And $\cos \mu=\cos ^{2} p_{1}-\cos ^{2} p_{2}+\cos ^{2} p_{3}$,
$C_{2} d_{5} o_{1}=p_{2} p_{1} p_{3} \quad C_{1} d_{1} o_{1}=p_{3} p_{2} p_{1}$, $\cos \nu=\cos p_{2} \cos p_{3}+\cos p_{1} p_{2}+\cos p_{1} p_{3} ;$
formulæ calculable at once by Byrne's dual logarithims, or easily adapted to logarithmic computation by subsidiary angles.

All the formulæ for the pentagonal dodecahedrons are immediately derivable from those of the irregular twenty-fourfaced trapezohedron.

144. Limits of the Form of the Irregular Twenty-four-faced Trapezohedron.

As m and n approach in magnitude to unity, the irregular twenty-four-faced trapezohedron approximates to the octahedron; and when m and n both equal unity, it becomes the octahedron. In this case the three planes meeting in the points $o_{1}, o_{2}, \& c ., o_{8}$ (fig. 25, Plate III.), lie in the same plane, and the edges, such as $C_{1} \delta_{1}, C_{2} \delta_{1}$, lie in the same line.

As m and n both increase in magnitude and become infinitely great, this form approximates to and becomes the cube. In this case the four planes meeting in $C_{1}, C_{2}, \& c$., C_{6}, become the same plane, and the edges, such as $o_{4} \delta_{1} o_{1}, o_{1} \delta_{5} o_{5}, \& c$., the same straight line.

As m approaches to unity while n increases in magnitude and becomes infinitely great, the form approaches the rhombic dodecahedron. When m equals unity, while n remains finite, the form becomes the three-faced octahedron. When m and n equal each other and are both finite and greater than unity, the form becomes that of the regular twenty-four-faced trapezohedron. Finally, when m remains finite and greater than unity and n becomes infinite, the form becomes that of the pentagonal dodecahedron.
145. As yet the half-symmetrical forms with parallel faces, the pentagonal dodecahedron and the irregular twenty-fourfaced trapezohedron have only been found in combination with those of the full symmetrical forms of the cubical system, and never with those of the half-symmetrical forms with inclined faces.
146. For the pentagonal dodecahedrons the following are the values of the angles μ and ν.

${ }^{2}\left[1{ }^{4}\right.$ - ${ }^{\text {l }}$	$\mu=77^{\circ} 19^{\prime}$	$y=60^{\circ} 48^{\prime}$.
F $\frac{1}{2}$ [$1 \frac{4}{4} \times \infty$	$\mu=73^{\circ} 44^{\prime}$	$\nu=61^{\circ} 19^{\prime}$.
G $\frac{1}{2}$ [$1 \frac{3}{2} \infty$]	$\mu=67^{\circ} 23^{\prime}$	$\nu=62^{\circ} 31^{\prime}$.
H ${ }_{\frac{1}{2}}[1 \stackrel{1}{2} \times$]	$\mu=53^{\circ} 8^{\prime}$	$\nu=66^{\circ} 25^{\prime}$.
$\mathrm{M} \frac{1}{2}[13 \infty]$	$\mu=36^{\circ} 52^{\prime}$	$\nu=72^{\circ} 33^{\prime}$.
N $\frac{1}{2}[14 \infty]$	$\mu=28^{\circ} 4^{\prime}$	$\nu=76^{\circ} 23^{\prime}$.

For the irregular twenty-four-faced trapezohedrons the following are the values of μ and ν.

$B \frac{1}{2}\left[\begin{array}{lll}1 & \frac{5}{4} & \frac{5}{3}\end{array}\right.$	$\mu=68^{\circ} 54^{\prime}$	$\nu=19^{\circ} 57^{\prime}$.
$\boldsymbol{E} \frac{1}{2}\left[\begin{array}{llll}1 & \frac{4}{3} & 2\end{array}\right]$	$\mu=67^{\circ} 16^{\prime}$	$\nu=26^{\circ} 17^{\prime}$.
$G \frac{1}{2}\left[\begin{array}{llllll}1 & \frac{15}{11} & \left.\frac{15}{7}\right]\end{array}\right.$	$\mu=67^{\circ} 13^{\prime}$	$\nu=28^{\circ} 32^{\prime}$.
H ${ }_{\frac{1}{2}}\left[\begin{array}{lll}1 & \frac{3}{2} & 2\end{array}\right]$	$\mu=64^{\circ} 37^{\prime}$	$\nu=38^{\circ} 13^{\prime}$,
K	$\mu=63^{\circ} 37^{\prime}$	$\nu=53^{\circ} 55^{\prime}$.
L	$\mu=60^{\circ} 56^{\prime}$	$\nu=48^{\circ} 55^{\prime}$.
M ${ }_{2}^{2}\left[\begin{array}{lll}1 & \frac{5}{3} & 10\end{array}\right]$	$\mu=61^{\circ} 41^{\prime}$	$\nu=56^{\circ} 18^{\prime}$
$N \frac{1}{2}\left[\begin{array}{lll}1 & 2 & 4\end{array}\right]$	$\mu=51^{\circ} 45^{\prime}$	$\nu=48^{\circ} 11^{\prime}$.
$P_{\frac{1}{2}\left[\begin{array}{lll}1 & 5 & 10\end{array}\right]}$	$\mu=22^{\circ} 46^{\prime}$	$\nu=72^{\circ} 17^{\prime}$.

147. Some crystals have a tendency to split in directions parallel to a certain form. This is called a clearage-plane. If they split readily, the cleavage is called a perfect one. Substances which crystallize in the cubical system have only been observed to split or cleave parallel to the planes of the cube, octahedron, and rhombic dodecahedron.
Minerals whose crystals cleave parallel to the faces of the cube, those printed in italics indicating that the cleavage is easy and perfect:-

Alabandine.	Galena.	Pyrite.
Altaite.	Gersdorfite.	Pyrochlore.
Anacine.	Haueritie.	Salt.
Argentite.	Iridium.	Skulterudite.
Chromite.	Iron.	Smaltine.
Clausthalite.	Lerbachite.	Spinelle.
Cobaltine.	Limneite.	Stannine.
Cubane.	Maguetite.	Steinmannite.
Embolite.	Naumannite.	Sylvine.
Franklinite.	Periclase.	Ullmanite.
Gahnite.	Perowskite.	

Minerals whose crystals cleave parallel to the faces of the octahedron :-

Alum.	Diamond.	Grïnauite.
Arsenite.	Eisennickelkies.	Magnetite.
Boracite.	Fahlerz.	Sal ammoniac.
Bornite.	Fluor.	Senarmontite.
Chromite.	Franklinite.	Smaltine.
Cuprite.	Gabnite.	Spinelle.

Minerals whose crystals cleave parallel to the faces of the rhombic dodecahedron:-

Alabandine.	Garnet.	Smaltine.
Amalgam.	Mauyne.	Sodalite.
Argentite.	Ittnerite.	Stannine.
Blende.	Leucite.	Tennantite.
Eulytine.	Skutterudite.	
vOL. II.		

148. In the following table all substances which crystallize on the cubical system are arranged according to their chemical formulæ; the letters c, o, and d, representing that faces parallel to the cube, octahedron, and rhombic dodecahedron, occur on their crystals. The crystals having faces parallel to other forms have been previously ennmerated under those forms. The table is principally taken from Rammelsberg's Crystallographic Chemistry.
Chemical Formuloe of Substances crystallizing on the Cubical System.

Ag, Silver (ocd)
$A \mathrm{~A}$, Gold (ocd)
Cu, Copper (oc)
Fe , Iron (oc)
Hg, Mercury (o)
Ir, Iridium (oc)
Pb , Lead (o)
Pt, Platinum (c)
P, Phosphorus (od)
C, Diamond (oc d)
$\overline{\mathrm{Mg}}$, Periclase (oc)
Ni (oc)
Cd (ocd)
Git, Cuprite (ocd)
Sib, Senarmontite (o)
Äs, Arsenite (o)
Ü \ddot{U}, Pechuran (o)
$\overline{\mathrm{I}} \mathrm{Z}+\mathrm{O}_{\mathrm{s}}$, Irite (o)
$\dot{C} \mathbf{a}+$ T̈is, Perowskite (od)
$\dot{C a}+4 \ddot{\mathrm{~B}}$, Bhodozite (od)
$\mathrm{Fe}+(\mathrm{Fe} \mathrm{Fi})$, Iserine (ocd)
Cu^{\prime} and $\mathrm{Cu}^{\prime} \mathrm{Fe}^{\prime}$ (o)
Mn^{\prime}, Alabandine (ocid)
Zn^{\prime}, Blende (ocd)
Pb^{\prime}, Galena (ocd)
$\mathrm{Pb}^{\prime} \mathrm{Fe}^{\prime}$
$\mathrm{Pb}^{\prime} \mathrm{Sb}^{\prime \prime \prime}$, Steinmannite (oc)
Ag^{\prime}, Argentite (ocd)
$\mathrm{Mn}^{\prime \prime}$, Hanerite (ocd)
$\mathrm{Fe}^{\prime \prime}$, Pyrite (ocd)
Ni^{\prime}, Grünauite (oc)

Ni As, Rammelsbergite (ocd)
Co As, Smaltine (ocd)
$\mathrm{Co}^{2} \mathrm{As}^{3}$, Skutterudite (ocd)
(Ni Co$)^{\mathrm{m}} \mathrm{As}^{\mathrm{n}}$
(Co Fe) As, Safllorite (oc)
$\mathrm{Ni}^{\prime \prime}+\mathrm{Ni}(\mathrm{SbAs})$ Cobaltine (oc)
K Fl
Na Fl (c d)
Ca Fl (ocd) Fluor
K Cl, Sylvine (co)
Am Cl, Salammoniac (ocd)
Na Cl , Salt (cod)
Li Cl (c)
$\mathrm{Ag} \mathrm{Cl}^{\mathrm{Cl}}$ Kerate (cod)
$\mathrm{UCl}(\mathrm{c})$
GaCl
$\mathrm{CoCl}+8 \mathrm{aq}(\mathrm{oc})$
$\mathrm{K} \operatorname{Br}(\mathrm{c})$
Na Br (c)
Ag Br, Bromite (c o)
KI(cod)
Am I (cod)
Na I (c)
Zn I (o)
Pb I (o)
K Cy
$A m \mathrm{Cy}$ (oc)
Na Cy
$\mathrm{Ti} \mathrm{Cy}+3 \mathrm{Ti}^{3} \mathrm{~N}$ (c)
Ag Hg , Amalgam (ocd)
$\mathrm{Ag}^{6} \mathrm{Hg}$, Arquerite (o)
Ag Se, Naumannite (c)
Ag Te, Petzite (c)
Pb Se , Clausthalite (c)
PbSe and Hg Se ,Lerbachite (c)

Pb Te , Altaite (c)
$\mathrm{Mg}+\mathrm{Al}$, Spinelle (od)
$\overline{\mathrm{Zn}}+\mathrm{A} \boldsymbol{\mathrm { A }}$, Gahnite (oc)
$\mathrm{Fe}+\mathrm{Fe}$, Magnetite (ocd)
$\dot{\mathrm{Fe}}+\overrightarrow{\mathrm{G}}$, Chromite (o)
$\overline{\mathrm{Fe}}+\mathrm{Mn}$, Franklinite ocd
$\mathrm{A} \mathrm{S}^{3}+18 \mathrm{aq}$
GF $\bar{S}^{3}+15$ aq
Ba
Sr N (oc)
Pb (oc)
$\mathrm{NaCl}(\mathrm{cod})$
$\mathrm{Ni} \mathrm{C} \mathrm{l}+6 \mathrm{aq}$
Co $\dot{\mathrm{C}} \dot{\mathrm{l}}+6 \mathrm{aq}$
$\dot{\mathrm{Cu}} \dot{\mathrm{Cl}}+6 \mathrm{aq}$ (o)
立 $\ddot{\mathrm{Br}}$ (cod)
$\mathrm{N}_{\mathrm{a}} \mathrm{Br}(\mathrm{cod})$
$\mathrm{Mg} \mathrm{Br}+6 \mathrm{aq}$
$\mathrm{Zn} \mathrm{Br}+6 \mathrm{aq}$
$\stackrel{\mathrm{Ni}}{\mathrm{Br}}+6 \mathrm{aq}$
$\mathrm{Co} \mathrm{Br}+6 \mathrm{aq}(\mathrm{oc})$
$A m \dddot{I}$ (c)
$\mathrm{Mg}^{3} \mathrm{Br}$
$\mathrm{Mg}^{3}{ }^{\mathbf{B}}{ }^{4}$, Boracite (cod)
$\dot{N}_{\mathrm{N}} \ddot{\mathrm{B}}^{2}+5 \mathrm{aq}$, Borax
Ńa $\dot{\mathrm{H}}+12$ ($\dot{\mathrm{Na}} \dot{\mathrm{S}} \dot{\mathrm{b}})+7 \mathrm{aq}(\mathrm{o})$
$3\left(\ddot{\mathrm{~F}}_{\ominus} \ddot{\mathrm{A}} \mathrm{s}+4 \mathrm{aq}\right)+\dot{\mathrm{H}}_{3} \overrightarrow{\mathrm{~F}}$, Pharmacosiderite (ocd)
$\mathrm{Gta}^{\prime} \mathrm{Fe}^{\prime \prime \prime}+2 \mathrm{Fe}$, Cubane (c)
$\mathrm{Cti}^{\prime 3} \mp e^{\prime \prime \prime}$, Bornite (cod)
$\mathrm{Co}^{\prime} \mathrm{Ce}^{\prime \prime \prime}$, Linnéite (c o)
$\mathrm{Pb}^{2} \mathrm{As}^{\prime \prime \prime}$, Dufrenoysite (d)
$\dot{R}^{4}\left(\mathrm{Sb}^{\prime \prime \prime} \mathrm{As}^{\prime \prime \prime}\right)$, Fahlerz (ocd)
$\dot{\mathrm{R}}=\mathrm{Pb}, \overrightarrow{\mathrm{F}}, \dot{\mathrm{Z}} \mathrm{n}$, and $\dot{\mathrm{G}} \mathrm{u}^{4}$
$(\mathrm{Ni} \mathrm{Co})^{3} \mathrm{~S}^{4}$
$\mathrm{Ni} \mathrm{Sb}+\mathrm{Ni}^{\prime \prime \prime}$, Ullmanite (ocd)
$4\left(\mathrm{Fe}^{\prime} 2 \mathrm{Ca}^{\prime}\right)+\mathrm{As}^{\prime \prime \prime}$, Tennantite (ocd)
$\mathrm{Na}^{\prime s} \mathrm{Sb}^{\prime \prime \prime}+18 \mathrm{aq}(\mathrm{od})$
Fe' Ni^{\prime}, Eisennickelkies (o)
$\left(2 \mathbf{G u}^{\prime}+\mathbf{S n}^{\prime \prime}\right)+\left(\mathrm{Fe}^{\prime}+\mathrm{Sn}^{\prime \prime}\right)$, Stannine (c d)
$\mathrm{Ni}^{\prime}+\mathrm{Ni} \mathrm{As}^{2}$, Gersdorffite (oc)
$\mathrm{Am} \mathrm{Cl}+\mathrm{Mn} \mathrm{Cl}+\mathrm{aq}$ (cd)
$\mathrm{CaCl}+5 \mathrm{Hg} \mathrm{Cl}+8 \mathrm{aq}$ (o)
$\left[2(\mathrm{~K} \mathrm{Am}) \mathrm{Cl}+\mathrm{FeCl}^{3}\right]+2 \mathrm{aq}$
$\left(\mathrm{NiCl}+2 \mathrm{NH}^{3}\right)+\mathrm{aq}(\mathrm{ocd})$
$\mathrm{AmCl}+\mathrm{SnCl}^{2}$ (ocd)
$\mathrm{K} \mathrm{Cl}+\mathrm{Pt} \mathrm{Cl}^{2}$ (o)
$(\mathrm{PbCl}+\mathrm{Pb})+(\mathrm{CuCl}+\mathrm{Cu})+$ aq, Percylite (ocd)
$2 \mathrm{Ag} \mathrm{Br}+3 \mathrm{Ag} \mathrm{Cl}$, Embolite oc
$\mathrm{ZnBr}+\mathrm{NH}^{3}$ (o)
$\mathrm{Ca} \mathrm{Br}+\mathrm{NH}^{3}$ (o)
$\mathrm{NiI}+3 \mathrm{NH}^{3}$ (o)
$\mathrm{KCy}+\mathrm{ZnCy}$ (o)
$\mathrm{K} \mathrm{Cy}+\mathrm{Cd} \mathrm{Cy}(\mathrm{o})$
$\mathrm{K} \mathrm{Cy}+\mathrm{Hg} \mathrm{Cy}$ (0)
$\mathrm{K} \mathrm{Cy}+\mathrm{Ag} \mathrm{Cy} \mathrm{(o)}$
$\dot{\mathrm{K}} \ddot{\mathrm{S}}+\mathrm{Al} \mathrm{S}^{3}+24 \mathrm{aq}$, Alum (ocd)
$\mathrm{Am} \mathrm{S}+\mathrm{A}+\mathrm{S}^{3}+24 \mathrm{aq}$
$\dot{K} \bar{S}+\mathrm{Fe}_{\mathrm{S}}{ }^{3}+24 \mathrm{aq}$
$A m \mathrm{~S}+\mathrm{Fe} \ddot{\mathrm{S}}^{3}+24 \mathrm{aq}$
$\dot{\mathrm{K}} \ddot{\mathrm{S}}+\mathrm{M}_{\boldsymbol{A}} \ddot{\mathrm{S}}^{3}+24 \mathrm{aq}$
$\mathrm{Am} \overline{\mathrm{S}}+\mathrm{Mm}_{\mathrm{q}} \mathrm{S}^{3}+24 \mathrm{aq}$
$\dot{K} \ddot{S}+\ddot{G}_{r} \ddot{S}^{3}+24 \mathrm{aq}$
$\mathrm{Am} \vec{S}+\ddot{\mathrm{G}}_{\mathrm{r}} \ddot{S}^{3}+24 \mathrm{aq}$
$3(\mathrm{Fe} \dot{\mathrm{K}}) \ddot{\mathrm{S}}+2 \mathrm{Fe}^{\cdots} \mathrm{S}^{3}+12 \mathrm{aq}$ (o)
$\ddot{B}+\dddot{S}_{\dot{q}^{3}}$, Eulytine (ocd)
$\dot{\mathrm{N}} \mathrm{a} \mathrm{Si}+\overline{\mathrm{Al}} \mathrm{Si}^{3}$, Analcine (c)
$\dot{\mathrm{K}} \mathrm{Si}+\underset{\mathrm{Al}}{\mathrm{Si}}{ }^{3}$, Leucite (d)
$\dot{\mathbf{R}}^{3} \ddot{\mathrm{Si}}^{2}+\ddot{\mathbf{R}}^{\prime} \mathrm{Si}$, Garnet (c d)

Where $\dot{\mathbf{R}}=\dot{\mathrm{Ca}}$, $\dot{\mathrm{F}}$, $\dot{\mathrm{M}} \mathbf{n}$,	Na $\bar{W}+\bar{W} \underline{W}$ (c)
$\mathrm{R}^{\prime}=\mathrm{Fe}, \mathrm{Al}$	
$\mathrm{a}^{3} \ddot{\mathrm{Si}}^{2}+\ddot{\mathrm{G}}_{\mathrm{F}} \ddot{\mathrm{Si}}^{\prime}$, Uwarrowite	$\mathrm{C}^{12}\left(\mathrm{H}^{6} \mathrm{Cl}\right) \mathrm{N}$
(od)	$\mathrm{C}^{12}\left(\mathrm{H}^{6} \mathrm{Br}\right) \mathrm{N}(0)$
$\begin{aligned} & (\dot{\mathrm{M}} \mathrm{n}, \dot{\mathrm{Fe}})^{5} \ddot{\mathrm{Si}}^{2}+\mathrm{Be} \mathrm{Si}+\mathrm{Am} \mathrm{~S}, \\ & \mathrm{Mn} \mathrm{O}, \text { Helvin }(0) \end{aligned}$	Substances whose formulæ are undetermined:-
$\mathrm{Na} \mathrm{Cl}+3 \mathrm{Na} \mathrm{Si}+3$ ail Si, Sodaltite, (cd)	Hauyne, or Lapis Lazuli, a silicate of Alumina, Soda, and Lime (ocd)
$(\mathrm{Ni}$	Pyrochlore, Titanium ore (ocd)
$(\dot{\mathrm{Na}} \dot{\mathrm{Ca}}+8 \dot{\mathrm{z}} \mathbf{n} \mathbf{C})+8 \mathrm{Cq}(0)$	Tritonite, Silicate of oxides of Cerium and Lanthanium (c)
$\left(3 N a \ddot{G}+\ddot{G F}^{\left(\ddot{G}^{3}\right)}+9 \mathrm{aq}\right.$	Voltaite, Hydrous sulphate of
$\mathrm{Fe}^{3} \mathrm{~A} \mathrm{~s}+\mathrm{E}^{3} \mathrm{As}^{2}+18 \mathrm{aq}$ (c)	iron, \&c. (ocd)

*** A discussion* followed, in which C. Brooke, Esq., F.R.S., Professor Morris, the Honorary Secretary, and the Chatrman took part; after which-

The Meeting was adjourned.

* This discussion having been of a very general character, it has not been found necessary to insert it.

Fig. 3. 1.m.n.

Fig. 6. 1.1.m

Plate I.

Fig. 4. 1.m.m.

Fig 7. 1.1.1

Fig. 5. 11. 0 .

Fig.3.1.m.n.

Fi.g. 6. 1.1.m

Plate I.

Fig.4. 1.m.m.

Fig. 7.1111

Fig. 8.

Fig. 9

Fig. 12

Fi: 10

Ithg. 13

Fig 18.
Plate III

Wyman \& Sons, G: Queen St W. C

Fig. 36

Fig. 28

Fig. 31

Fig. 30.*

Fig.40.*.

Fig. 67

Fig. 68

