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ORDINARY MEETING, June 3, 1867.
Carraiy E. G. Fisapourne, R.N., C.B., v tur CHarr.

The Minutes of the last Meeting were read and confirmed, after which the
following paper was read by the author:—

ON THE GEOMETRICAL ISOMORPHISM OF CRYSTALS
AND THE DERIVATION OF ALL OTHER FORMS
FROM THOSE OF THE CUBICAL SYSTEM. By
Rrv. Warter Mrrerers, M.A,

1. WrEN elementary substances, or their chemical com-
binations, pass from a state of vapour; or from a fluid
condition into that of a solid; or if they are deposited by
evaporation from a fluid holding them in solution, there is a
tendency of their particles to arrange themselves according
to certain laws of symmetry.

2. Thus solids more or less symmetrical, and with few
exceptions bounded by smooth, plane, or flat surfaces, are
produced. Such solids are called c¢rystals, and their plare
surfaces are termed faces.

3. Some crystals are remarkable for perfect symmetry of
form. Among these may be found solids formed with
mathematical accuracy, whose geometrical properties had
fascinated the ancient geometers ages before they were
known to exist in the productions of nature. Others are
exceedingly complex, being formed by the combination of
faces parallel to those belonging to several simpler forms;
the rclative positions of these simpler forms to each other
being regulated by certain mathematical laws.

4. The more complex forms being reduced to the com-
bination of the simplest from which they can be derived, it is
found that all the simpler forms can be grouped together in
six distinct classes or systems. :

5. The crystals of any one substance may generally be
reduced to forms belonging to cne system; but there seems
to be no limit to the number of combinations of different
species of these forms which may take place in any indi-
vidual crystal.

6. To the rule that all the crystals of a particular substance
should have their faces parallel to those of the forms of one
system, there are numerous exceptions.

vyoL, 1. - 2E
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7. The following are the six systems :— )

Ist. The Cubical; called also the tesseral, tessular,
octahedral, regular, isometric, and monometric.

2nd. The Pyramidal; called also the tetragonal, square
prismatic, quadratic, monodimetric, dimetric, four-
membered, viergliedrig, and the two-and-one axial.

3rd. The Rhombohedral; called also the hexagonal,
monotrimetrical, sechsgliedrig, and the three-and-
one axial. _

4th. The Prismatic; called also the rhombic, trimetric,
binary, unisometric, orthotype, orthorhombic,
zweigliedrig, and one-and-one axial.

5th. The Obliqgue; called also the monoclinohedric,
hemiprismatic, hemiorthotype, clinorhombic, hemi-
hedric-rhombic, augitic, zwei-und-eingliedrig,
and the two-and-one-membered.

6th. The Anorthic; called also the doubly oblique,
triclinic, triclinohedric, anorthotype, clinorhom-
boidal, tetarto-prismatic, tetarto-rhombic, einglied-
rig, and the one-and-one-membered.

CUBICAL SYSTEM.

8. The forms of the cubical system possess the highest
possible degree of symmetry when compared with those of
the other systems. They are divided into two groups,—the
holohedral, or perfectly symmetrical, and the hemihedral, or
half-symmetrical ; the latter being derived from the former
by being parallel to, or possessing only half their faces,
grouped together after certain laws.

9. The holohedral, or perfectly symmetrical forms, are seven
in number, and are shown on Plate I. Of these, three—the
cube (fig. 1), the octahedron (fig. 7), and the rhombic
dodecahedron (fig. 8), are invariable forms, each having but
one species, and each the same invariable angles, cither of
their faces or inclination of their faces.

The remaining four forms are not invariable, and there are
an infinite variety of species, each differing from the other
in the angles of their faces and their inclinations to each other.

The halt-symmetrical, or hemihedral forms, are represented
in figs. 15, 17, 19, 21, 28, and 25, Plate 111.

Holohedral forms, cubical system.

10. The Cuse. (fig. 1, Plate I.) is bounded by six equal
faces, each face, such as 0,0;0,0,, being a perfect square;
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it has therefore eight solid angles, O,, 0,, &c., O,, each angle
being formed by the union of three planes; and twelve
equal edges, such as 0,0,, 0,0;, &c. The inclination of any
face to another is measured by the angle contained between
two perpendiculars drawn from any point in the edge made
by the intersection of the two faces, each on one of the adjacent
faces. In the cube this inclination of two adjacent faces 1s 90°,
The facial angles, or the angles between two edges of a face,
such as 0,0,0;, are always 90°.

11. The Ocraueprox (fig. 7, Plate 1.) is bounded by eight
equal faces, each face, such as 0,C;0;, shown on a plane surface
(fig. 83, Plate IV.), being an equilateral triangle. Tt has six
sold angles, 0, Cs, &c., Cq, each formed by the union of four
planes, and twelve equal edges; the inclination of adjacent faces
is an angle of 109”28, and the facial angle, such as C,C,C,,
18 60°. : '

12, The Rmomsic DobecamevroN (fig. 5, Plate I1.) is
bounded by twelve cqual faces; each face, such as 0,C,0,C;
(fig. 80, Plate IV.), is a geometrical rhomb bounded by four
cqual lines, 0,0, being parallel to 0,C;, and 0,0; to 0;C,. The
greater angles of the rhomb C,0,0; and Oy0,C, being 109° 28,
and the lesser, o,Cso; and 0,Cs0;, 70° 32°. It has twenty-four
equal edges, such as Cyo,, Cy0,, &c., eight solid angles, o;, 0,
&c., o4, formed by the union of three planes, and six solid
angles, Cy, O, &c:, U;, formed by the union of four planes.
The inclination of adjacent faces is 120°. This form is called
by some German writers the granatoédron, as being a cha-
racteristic form of the garnet.

13, These three forms, the cube, octahedron, and rhombic
dodecahedron, are called invariable forms, as, though differing in
size, they always have similar faces and angles; that of the
cube being a square, that of the octahedron an equilateral
triangle, and that of the rhombic dodecahedron a rhomb
whose larger angle is 109° 28,

14. The four other forms (figs. 2, 8, 4, and 6, Plate 1.) are
called variable, each presenting an infinite variety of species,
differing from each other in their angles of inclination and
those of their faces.

15. The Turer-racup OcrameproN (fig. 6, Plate I.) is
bounded by 24 equal faces, each being an isosceles triangle,
0,050 (fig. 32, Plate IV.). These faces are so grouped
together as to form a solid having eight solid angles, formed
by the union of three planes, o,, 0,, 0, &c., 05 (fig. 6) ; the plane
angles being the largest of the isosceles triangles; and
six solid angles, C;, C,, &c., O, each formed by the union
of eight of the cqual angles of the isosceles triangles.

2E2
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There are 12 longer edges, such as 0,0, CC; &c., and
24 shorter, such as 0,C,, 0,C,, &c. The 12 longer edges
are the edges of an octahedron. It may be formed
by placing on every face of the octahedron a three-faced
pyramid on a equilateral triangular base. The angles of
these isosceles triangles differ in different species of the
three-faced octahedron, within certain limits to be described
hereafter.

The synonyms for this form are the pyramidal octaledron,
triakisoctahedron, trioctaledron, and galenoid.

16. The Four-racep Cuse (fig. 2, Plate 1.) is bounded
like the last by 24 equal faces, each being an isosceles triangle, -
such as Cjo,0, (fig. 34, Plate IV.), but grouped so together as to
form a solid having six solid angles, C,, C,, &c., G (fig. 2),
each formed by the union of four of the largest angles of the
isoscles triangles, and eight solid angles, o,, 0, &c., 05 (fig. 2),
formed by the union of six of the equal angles of the isosccles
triangles. This form lLas 24 shorter edges, such as Co,
C,05, &c., and 12 longer ones, such as 0,0, 0,05, &c.  The 12
longer edges are those of a cube,

It may be formed by placing on every face of the cube a
four-faced pyramid on a squarc base. ,

The angles of theisosceles triangles differ for cach particular
species of the four-faced cube.

Synonyms.—Pyramidal cube, heaatetraliedron, tetrakis-
hexahedron, and fluoride.

17. The TweNTY-FOUR-FACED TrAPEZOUEDRON (fig. 4, Plate I.)
is bounded by 24 equal faces, each face being a deltoid or
trapezium, C,dyo,d, (fig. £9, Plate IV.); that is, a four-faced
figure having two longer equal sides, Cjd, and Cds, and two
shorter equal sides, o,d,, 0,d,. These 24 equal trapeziumis are
so grouped together as to form a solid having six solid angles,
C, 0, &ec., C; formed by the union of the plane angles of
four trapeziums, equal to d,C,d, ; eight solid angles, 0, 0,, &c.,
oy, formed by the union of the plane angles of three trapeziums,
equal to d,0,d, ; and 12 solid angles, d,, d, &c., dy,, formed by
the union of the plane angles of four trapeziums, equal to
Cidy0,. This forin has 24 equal longer edges, such as C,d,, C,d,,
and 24 shorter edges, such as 0,d,, 0,ds, &c. The angles of the
deltoids or trapeziums differ for each particular species of the
twenty-four-faced trapezium.

Synonyms.—Jeositessarahedron, icositetrakedron, trapezo-
hedron, and leucitoid,

18. The Six-racEp OcrameDRoN (fig. 3, Plate I.)is bounded
by 48 equal faces, each face being a scalene triangle, C,0,d,
(fig. 36, Plate IV.). These 24 triangular faces are so grouped
together as to form a solid having six solid angles, C,, C,, &c.,
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C;, each formed by the union of eight equal plane angles at
the points (0, C;, &c. ; eight solid angles, formed by the union
of six equal plane angles at the points o, 0,, &c., 05; and 12
solid angles, formed by the union of four plane angles at the
points d;, d,, &c., d,.

This form has 24 edges, each equal to the edge C,d;, 24
each equal to the edge C,0;, and 24 each equal to o,d,.

The angles of the triangular faces of this form differ for

-each particular species of the siz-faced octahedron.

Synonyms.— Hezakis-octahedron, hexoctahedron, tetrakonta-
oktaédron, pyramidal granatohedron, triagonal polyhedron,
and adamantoid.

19. These seven forms, grouped together on Plate I.,
have this relation in nature, that any substance forming
crystals of any one of these forms may, and does sometimes,
form crystals of any one of the other forms, or parallel to their
faces. But when these forms are combined on any one crystal,
as in fig. 29%, Plate IV.*, the forms to which the faces are
parallel, except in the case of what are called twin crystals,
always have a certain fixed position with regard to each other.
These forms have not only this natural relationship to each
other, but they have also certain geometrical relations, which
we shall proceed to describe.

20. Looking at Plate I., the forms present no relationship
to each other. Plate II. shows them conuected together
by beautiful geometrical laws.

21. In Plate II. we see that each of the six other forms
can every one of them be inscribed, as geometers term if, in
the cube.

Fig. 8, Plate II., shows the cube having each of its faces
divided into eight equal triangles, by joining the opposite
angles of each square by two diagonals, such as 0,05, 0,0s,
meeting in C,, the centre of the face, and by two other lines,
such as D, Dy, D;D;, also meeting in Cy, and joining the centres
D,, D, of the edges 0,0,, 0,0,, and D;, D;, the centres of the
edges 0,0; and 5409-

Fig. 9, Plate I, shows the Four-faced cube inscribed in the
cube, and we see that the six solid angles of the twenty-four
faced cube, C,, C,, &c., O, touch the six centres of the six faces
of the circumscribing cube.

- Fig. 10. The Siz-faced octahedron inscribed in the cube, six
of its solid angles, 0,, C;, &c., C;, touching the centres of the
six faces of the circumseribing cube.

Fig. 11. The Twenty-four-faced trapezohedron inscribed in
the cube, six of its solid angles, C,, C,, &c., C;, touching the
centres of the six faces of the circumscribing cube. .

Fig. 12, The Rhombic dodecahedron inscribed in the cube,
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six of its solid angles, (), C,, &c., O, touching the centres of
the six faces of the circumscribing cube.

Fig. 13. The Three- faced octahedron inscribed in the cube,
six ofits solid angles, 0, C,, &c., C;, touching the centres of
the six faces of the circumscribing cube.

Fig. 14. The Octahedron inscribed in the cube, its six solid
angles Cy, 0y, &c., C;, touching the centres of the six faces
of the circumscribing cube.

Cusrcan Axes.

22. The lines formed by joining the opposite centres of the
faces of the cube C,C,, C;C;, and C,C, (fig. 27, Plate IV.), are
called the cubical azes of the cube. These three lines are
equal to each other, and are perpendicular each to two opposite
faces of the cube; they intersect in A, the centre of the
cube. In fig. 27 two other sets of axes are shown, four O,0;,
0,0, 0;0;, and 0,0, joining the opposite solid angles O,
0,, &c., O, of the cube; six others, D, D,,, D,D,,, D.D,, &c.,
DgD, joining the opposite centres D,, D,, &c., D,, of the edges
of the cube; both sets of axes passing through A, the centre
of the cube. The four axes 0,0, &c., 0,0,, fig. 27, Plate IV .,
are evidently the four diagonals of the cube, and are represented
fig. 9, fig. 10, &c., to fig. 14, Plate II., by lines marked thus
—- —- —-  The line D Dy, fig. 27, is parallel and equal to a
line drawn from O, to O,, and is therefore equal to a diagonal of
one of the faces of the cube. The 12 axes D, Dy, D,D,,, &c.,
DD, are therefore each equal to a diagonal of the face of the
cube. These lines are thus represented — — — —, fig. 9,
fig. 10 to fig. 14, Plate II.

OCTATIEDRAL AXES,

23. If the equilateral triangle C,0,C;, representing one of
the faces of the octahedron (tig. 33, Plate IV.), has its three
sides bisected by d,, d,, d;, and Uids, Csd,, and Cyd; be drawn
meeting each other in the point o, this point o, will repre-
sent the centre of gravity of the triangle (,(C,C;, and any of
the shorter lines do will be a third of the longer one, Od.
The octahedron inscribed in the cube fig. 14, Plate II., has all
its edges bisected by the points d,, d,, &c., d,,, and each equi-
lateral triangle divided into six triangles by lines Cd meeting
in 0, 0, &c., 05, the centres of the eight faces of the octa-
hedron. . :

Tt will be neen in fig. 14 that the six axes, such as D,D,,
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pass through two opposite bisections, dy, s, of the opposite
edges 0,0, and C,C; of the octahedron.

The four axes, such as 0,0;, pass through the centres o,, o,
of the opposite and parallel faces, C,C,C; and C;C;C, of the
octahedron, and are perpendicular to both of them.

Owing to this property, the four axes 0,0,, &e., 0,0,, are
called the octahedral axes of the cube.

24. This property may be demonstrated as follows :—

. Describe a square (fig. 27%, Plate IV.*), AC,D,C,, having
each of its sides = O,D; (fig. 27, Plate IV.).

AC,D,C, is evidently a fourth of the square 0,0,0,0,, forming
a face of the cube (fig. 27, Plate IV.). .

Draw the diagonals of the square C,0,, and AD,, meeting
in the point d,. C,C, bisected in d; will represent on a plane
surface in (fg. 27%, Plate IV.*) the edge of the octahedron
0,d,0, seen in perspective in (fig. 14, Plate IL.).

Produce D,C; and C,4 (fig. 27%) to O, and D;, making C,0,
and AD; each = AD, a diagonal of the square D,C,40,.

Join 0,D,, make Ad,= Ad,. Join C,d; and A0,, meeting in o,.

Then Cyo,dg and Ao,0, (fig. 27%) represent on a plane surface
the lines similarly shown in perspective in (fig. 14, Plate II.)

25, To facilitate calculation we shall choose one of the sides
of the square 0,4 0,D, as our unit,

5 1
Then AD,=4/3 and Ad1=Ad5=%E=\/—§

By plane trigonometry tan 4d,0,=—""=—=, /2,

And angle Ad,C,=54° 44" 8",

Now (fig. 14, Plate I1.) the lines C,d, and Oyl are both by
construction perpendicular to tho edge C,0, of the octahedron
of two adjacent {aces at the point d;.

The angle 0,d,C, therefore measures the inclination of these
faces ; but this angle is evidently twice the angle Ad,C; (fig.
27, Plate IV.%). What is true with regard to the angle of
inclination over the edge 0,0, is true by similarity and symmetry
of construction of all the other edges of the octahedron. And
therefore the angle of inclination of any two adjacent faces of
the octahedron is 109° 28" 16”.

R Rt S

26. Again (fig. 27%, Plate IV.¥) tan 40,D; =A/2.
01D5

but tan Ad,0;=,/3. Therefore A0, D;=Ad.C,;

also 0,4D,=90°— 4o D, =90~ Ad 0, ; consequently

Ao,d;=90° and the line Ao, is perpendicular to Cd, at the
point o;.

By symmetry of construction the line 0,0, (fig. 14, Plate IL.)

=AD; 5
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is perpendicular to the three lines O,d;, Cyd,, and 03(21, and
consequently to the plane face C,C,C, of the octahedron.

Likewise by symmetry of construction each of the four axes
0,0,, &c., 0,0,, are respectively perpendicular to two opposite
and parallel faces of the octahedron.

27. From triangle 40,D; (fig. 27*) we have

A02=0D2+ AD2=1+2=3.
Therefore 40,=4/3.

In right-angled triangle 0, Ad,; Cd?=C 4%+ AdS*= +‘]§=%
Therefore Gld5=,\/§.
But triangles Ao,d; and 4D,0, are similar.

4o, AD Ady . AD; V2. Y3 /3
Therefore —1=""13 = s 5 y_ Vo
A4, 4o, do=—"5 5 3
Consequently Ao, =140,. )
Again by similar triangles Ad,o, and C,d 4.
o,ds Adj (Adg)?

d,gA:m 0,d;= '85—0—1-=g\/§5=%-011l3. Also Ad5=~}2~AD5.

28. Hence, referring to (fig. 14, Plate II.), we see that
when the octahedron is inscribed in the cube, the three cubical
axes, 0,0, 0,C,, and C,C; join together the opposite solid
angles of the octahedron. The four octahedral axes 0,0,
0,0y, &c., 0,0, pass through the centres of two opposite faces of
the octahedron and are perpendicular to them.

The points o,, 0,, &c., being one-third of the distance of
the centre of the cube from the solid angles 0,, 0,. &c., of the
circumscribing cube,

Also that the six axes D, D, &c., DD, joining the opposite

centres of the edges of the cube, pass each through two
opposite edges of the inscribed octahedron. The distance of
the centre of the cube from the centre of the edge of the
octahedron being half the distance of the centre of the edge
of the cube from that point.

29. Referringto fig. 27%, Plate I'V.*, we have already shown,
§ 25, that the angle Ad.C, = angle A0,D_ =54° 44’ §, conse-
quently, since 0,4D,0, is by construction a parallelogram,

The angle C;d0,=54° 44 8, and the angle 0,4D,=
35° 157 527, _

Hence the angle such as 0,40, which any octahedral axis 40
makes with any adjacent cubical axis 40 is 54° 44’ 8" ; and the

angle such as O, AD, which the octaledral axis 0.4 makes with

any adjacent axis 4D, i835°15° 52", This latter axis is called
o rhombic axis, ,
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RuoMBIc AXEs.

30. Describe a square D,0,AC, (fig. 28*, Plate IV .*) having
its equal sides one-hall the side or edge of the circumscribing
cube. Join the diagonals C,;0, and D 4 meeting in d,. Pro-
duce D,C, to 0, and C,4 to D;, making C 0, and AD; each
=AD,. Join CD; and O;4 mesting in o,. Draw 0,d;
perpendicular to 4D,. Then since C,0,D,4 is a rectangular
parallelogram, it follows 40, is bisected in o, 0,d,=%0,D; and
Ad,=1AD,.

Then referring to (fig. 12, Plate IL),—the square 0,D,C,4
represents on a plane surface (fig. 28%), and the parallelogram
C,AD.0, the same figures shown in perspective in (fig. 12,
Plate I1.); the former being one-fourth of a section of the
cube drawn through the points D,D,D, D,, and the latter one-
fourth of the section drawn through 0,0,0,0,.

C,d,0,, Cioy, o,d;, &c., representing the lines similarly
marked in the perspective figure of the rhombic dodecahedron
inseribed in the cube.

31. Now fig. 80, Plate IV. Draw C,0,=C,C, (fig. 28%), on
both sides 0,0, as base, describe two isosceles triangles having
their equal sides, such as Cy,= C,0, (fig. 28%); join the
diagonals C,C; and 0,0, meeting in d;. C,0,C,0, will represent
on a plane surface a face of the rhombic dodecahedron, which
can boe inscribed in a cube whose edge is double C,D, or O,D;
(fig. 27%).

32. (Fig. 28%, Plate IV.*) D, d, is perpendicular to C,d,C,, -
and also D,d; is perpendicular to o,d,. Hence, referring to
(6g. 12, Plate I1.), D\d, is perpeundicular to C,d,C,, and Dyd; is
perpendicular to o;d;. Hence, by symmetry and similarity of
construction, D,d, is perpendicular to 0,05 and C,C, meeting
in d; and therefore D,d; is perpendicular to the face 0,C,0,0;
of the rhombic dodecahedron, and passes through d;, its centre -
of gravity.

33. Hence by symmetry and similarity of construction
comparing (fig. 12, Plate IV.) with (fig. 5, Plate I.), every axis
D, Dy, D,D,,, D,D,, &c., DD, joining the opposite centres of
the edges of the circumscribing cube, are each perpendicular
to, and pass through the centres of gravity of opposite and
parallel faces of the inscribed rhombic dodecahedron. Thus

- DD,y is perpendicular to Cy0,Cy0,, and 00,00, DD, is
perpendicular to ,0,C;0, and C,0,040,, &. From this property
these axes are called the rhombic axes.

34. Again referring to (fig. 28%, Plate IV.*¥), we see that
Ao,=4A40, and Ad,=14D,. Hence by similarity and sym-
metry of construction (fig. 12, Plate IL.) we see that the rhombic
dodecahedron, inscribed in the cube, touches the centre of
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each face of the cube, C,, 0,, &c., 0, by one of its four-faced
solid angles; cuts each octahedral axis 40, 40,, &c., by
0y, 05, &c., one of its three-faced solid angles, at a distance 4o,
the § of 40,. Also each semi-rhombic axis cuts the centre of
the rhombic face, such as C,0,C;05 ab d, Ad; being $AD;.

To inscribe the three-faced Octahedron in the Cube.

85. (Fig. 29, Plate IV.) Describe the square C, D, 0,4, having
each of its sides equal to O,D,, fig. 27, Draw the diagonals
(0, and 1,4 meeting in d,.

Produce D, 0, and C,4 to 0, and D, make 4D, and 0,0, each
cqual to AD,. dJoin O,D;. In AD, take Ad;=Ad,.

Produce A0, to M. For distance AM see § 37. Join d;al,
cutting 40, in o,. Then join C,o,.

Then referring to (fig. 13, Plate I1.), 0,d,C, represents the
edge of the three-faced octahedron, C;0; and o.d; the corre-
sponding lines shown in perspective.

36. To draw the three-faced octahedron inscribed in the
cube (fig. 27, Plate IV.).

Describe a square 0,0;,0,0,; draw 0,0, at such an angle and
such a length that none of the edges or axes of the cube may
obscure each other. Then draw 0,0,, 0;0,,and 040, parallel and
equal to 0,0,. Join 0,0,, 0,0,, 0,0,,and 0,0,. Also join 0,0,
0,04,0,0;,and 0,0, meeting in 4, the centre of the cube. These
diagonals of the cube are the four octahedral axes of the cube.

Bisect 0,0, in Dy, 0,0, in D,, &c., 040, in D,,; join DD,
DDy, DDy, DDy, DDy, and DD, all intersecting in 4.
These are the six rhombic axes of the cube.

Lastly take (| the intersection of the diagonals of the face
0,0,0,0,, C, that of the diagonals of the face 0,0;0,0,, &c.
Join 0,0, 0,0,, and C,C; intersecting in 4. These are the
three cubical axes of the cube.

Then take a pair of proportional compasses and set them so
that Ao, (fig. 29, Plate IV.) be the distance between the shorter
legs, and A0, between the longer legs of the compass.

Then in fig. 27, take the distance 40, with the longer legs
and mark off 4o, with the shorter ; in the same way mark off
the points o,, o, &c., o, on the other octahedral axes.

Lastly (fig. 13, Plate II.) prick off from this construction of
(fig. 27, Plate IV.) the points C,, 0y, &c., Cy; D,, D,, &c., D,
0y, 0,, &c., Oy; and o,, 0,, &c., 05 Draw the same lines as in
fig. 27,

Join 0,0, 0,0, &c., C0,, Cy0,, Cs0,, Cy0,, Cyo,, Cso,, &c.
Then d,, d,, &c., will be the points where the rhombic axes
bisect the edges C,0,, 0,0;, &c. Join with dotted lines d,o,, -
dy0,, &c. ; then (fig. 18, Plate I1.) will represent in perspective
the three-faced octahedron inscribed in the eube.
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In the solid itself the eight lines Ooarc each equal 0,0, (fig.
29, Plate IV.), the twelve lines Dd are each equal D,d,, or Dyd;
fig. 29).
( %7. ’,l)‘he distance of the point M from 4 (fig. 29, Plate IV.)
is arbitrary, so long as AM 1s greater than AC,.

For every point chosen for M, we have a value for Ao;, which
gives a distinet species of three-faced octahedron.

Speaking generally, taking AC, as a unit, AM may repre-
. sent any whole number or fraction greater than unity.

The following values of AM have been observed in natural
crystals :—

AM=2AC,, 3A0,, 44C,, TAC,, 340, and 83AC,.

38. Comparmg(ﬁg 29, PlateIV. )w1th (ﬁg 27* PlateIV. *),wo

see that M coincides with (0}, and A01=AS—O~ for the octahedron ;

" and with (Plate IV.%, fig. 28%), Ao;x% and o,d, is parallel

to AC, in the rhombic dodecahedron. In which case the point
M 13 said to be at an infinite distance from A.

39. Hence referring to figs. 12, 13, and 14, Plate II., we
see that the point o, of the three-faced octahedron cuts the

octahedral axis at some point between ATOl and ASOI ; there

being a distinet species of three-faced octahedron for every
one of these points; the distance Ao;, Ao,, and Aog being
the same for the same species.

40. Hence the rhombic dodecahedron, ﬁg 12, and the
octahedron, fig. 14, are the two limiting forms of the three-
faced octahedron.

41. If we construct (fig. 14) the edges of the cube in wire
and all the lines of the octahedron, such as C,d;, C.d,, &c., in
elastic threads; then if strings be fastened to o, tymcr together
Oydy, Cydy, &c., and these strings pass over pulleys at the
points o, 0y, &c., o4, if they be pulled uniformly so that oy, o,,

&c., o4 pass from,—s_l to ‘—Zl along the octahedral axes, the

model will show in that finite space of time every one of the
infinite number of species of three-faced octahedrons that can
theoretically lie between fig. 14, the octahedronm, and fig. 12,
the thombic dodecahedron inscribed in the cube.

Looking at the three figures, 12, 13, and 14, we see that the
twelve lines, such as C,d,C,, the edges of the octahedron, remain
unaltered, the changlng Tines belng represented by C,0, and 0,d;.

As the point o, A201, fig. 12, the
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apex o, rises from the triangular base C,C,C;, in fig. 14, till
two adjacent planes, fig. 12, over the edge C,d,C,, such as
0,0,0, and 0,0,0,, fig. 13, come into the same plane, fig. 12.

Fig. 14 having eight plane faces, passes through an infinite
series of forms, such as fig. 13, bounded by. 24 plane faces,
and terminates fig. 12 in a form bounded by twelve plane faces.

42, If (fig. 32, Plate IV.) we draw C,C,=C,C, (fig. 29, Plate
IV.), and describe on C,C, the isosceles triangle Cy0,0,, having
each of its equal sides Cyo, and Cy,=0C,0, (fig. 29), then the
triangle C,0,0; will represent, on a plane surface, one of the
24 equal faces of the three-faced octahiedron which can be
inscribed in a cube whose face is equal 0,0,0,0;, fig. 27.

43. Twenty-four of these triangles drawn on a plane surface
of cardboard can be cat out and folded together so as to make
a model of the three-faced octahedron. Such drawings are
called “nets.”” Nets ready drawn and fit for cutting and
folding and making models for all the principal forms of crystals,
by Mr. James B. Jordan, are published in Murby’s Science and
Art department Text Book, ‘ Elementary Crystallography.”

44. Referring to (Plate IV., fig. 29), we see that it is the
distance of the point M from A which determines the point o,
in A0,; or referring to (fig. 13, Plate IL.) the eight points
0y, 095 &C., 0, Which taken at equal distances from the centre
of thie circumseribing cube in the octahedral axes, determine
the species of the three-faced octahedron. If (fig.29, Plate IV.)
we take A0, as unity and call AM=1m, m then determines the
species of the three-faced octahedron, m being any whole
number or fraction greater than unity.

45. Now comparing (fig. 29, Plate IV.) with (fg. 13, Plate I1.)
we see that any particular face, such as 9,C,C,, cuts two cubical
axes AC, and 4C; in points (), and C,, and the third axis A0,
produced in M, or at distances 40,, AC;, andAM; or1,1,andm.
Since the line o,d; cuts 4C, in M, consequently the plane
0,C,0, produced also cuts AC, in M. What is true for one
face, %y the similarity and symmetry of construction of the
three-faced octahedron (fig. 13, Plate IL), is true for every

other of the 24 faces, If m be afraction represented by 11’, then
[/

k
the following are the most received symbols for the three-
faced octahedron.

ok
EO Naumann; khk Miller; and a# Brooke, Levy, and Des
k

Cloizeau.

46. The following species have been observed in nature,
having these respective values for m; viz,, 2, 8, &, 4, 1, 8, and
65, The annexed table gives the respective symbols of the
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principal clystalloglaphels for these forms, together with the
minerals in which faces of them have been found.

Naumann, | BMiller. :Brooke,&'c. Minerals.
20 1 2 2 1k a¥ Amalgam. Fluor. Pharmaco-
Argentite. Franklinite.  siderite.
Blende.  Galena. Pyrite.

Cuprite. Magnetite. Skutterudlte.
Diamond. Perowskite. Spinelle.

30 1 3 3 a¥ Cuprite, Fluor. Galena.

) 30 2 3 3 a'?_ Faiﬁem Garnet. Cuprite,
40 1 4 4 g,%— Gualena. Kerate.

—4}0 l 4 7 7 1 at . Galena,

—-,0 4 5 5 ' ar o Galena, N 7
210 G4 65 6 -

5 l ald Alum.

47. To find the ratio of the octahedral axis of the three-

faced octahedron to that of the circumseribing cube, or of Ao,
to 40,.

Plg 29, Plate IV. By construction 0,D,=1and AD,=,/3,

Therefore tan A0, D,=,/9=254° 44;
And therefore O Al)5=35° 16,

AM _
Also tan Md A.___l_qy'__=m\/2,

2
But 40,d,=180— (o 1AL75 LA M) =180°—35° 16'— Ad M.
=144° 4V — Ad M.
HencesinAo,d, _..cos(JO Ao,d;)=cos(90—144°44" + Ad M).
=cos (Ad;M—54° 44").
Ao, _sin Ad, M

But in triangle Ao,d;, A, sin Ao, 4

Therefore
Aoy=Ad, sm Ad5ﬂ[_ sin Ad M
WA Gin dod, = cos (AT =547 4T)
=A(7 Sln .A.d M
"% cos Ad M cos 54° 44’+sin AdM sin 54° 44

Ad, tan Ad.M
cos 54° 44/ +tan Ad M sin 54° 44/

at Ad,=¥2=_"_ and tan Ad,M=m 9. .
But 44, \éz 1 ind tan Ad,M=
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sin 54° 44 =405 /2 and cos 54° 44,/:011), 1

5 o
. 40; /3 AOI—_—-_'j
Hence Ao =~1_ ____M :M_
VA N EHm/20/E  142m
_om .
TTxom Y
S A |

;1?); 1 +27?L_]‘1—1T1%
48. If we call the distances 1, 1, and m, at which cach of the

24 faces of the three-faced cctahedron if produced would cut
three of the semi-cubical axes at right angles to each other,

indices; thentheratioof'%%1 = unity divided by the sum of the

reciprocals of the indices. Calling I? this ratio, then when m=2
R=2%; m=3 B=%; m=34 N=3%; m=1 I=§; m=1 B=7;
=4 R=-"r; and m=4¢2 D=7

49, When m=1, the three-faced octahedron becomes the
octahedron, and its three mdices arc 1, 1, and 1, and f£=1L.

Taking 1 1 m as the symbol for the three-faced octaliedron,
11 1 must be taken as the symbol for the octahedron.

50. For the octahedron Naumann’s symbol is O; Miller’s,
11 1; Brooke, Levy, and Des Cloizeau’s .

51. When the third index becomes infinite, or, in other
words, the face cuts two axes and is parallel to the third, then

m= %:oo , and j—?=0; and the three-faced octahedron is then'
the rhombic dodecahedron.

52. The three indices of the rhombic dodecahedron are,
therefore, 1,1, and oo ; and 1 1 co becomes its symbol. Nau-
mann’s symbol is 0 O ; Miller’s, 1 1 0; Brooke’s, &c., 11

To inscribe the four-faced Cube in the Cube.

53. (Fig. 37, Plate IV.) Describe the square A0, D, C, equal
one-fourth of the square 0,0,0,0; (fig. 27, Plate IV.), this
being a face of the cube in which the four-faced cube is to be
inscribed. Join AD), (fig. 37, Plate IV.). Produce D,0, to O,
and Cod to Dy, Make 0,0; and AD;=AD,. Join O,D,.

Produce A0, to M, and make AM=m, m being any whole
number or fraction greater than unity. The particnlar value
of m will determine the particular species of the four-faced:
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cube, there being a distinet species for every value which can
be assigned to m.

Join O,M cutting AD, in d,. Join Oyd,, O\d,.

In AD, take Ad,=Ad,. Draw dy, parallel to AM and
cutting 40, in o,.

Join Co,.

Then (fig. 37, Plate IV.) represents the same lines and letters
seen in perspective in (fig. 9, Plate I1.), or the square A0, D,C,
. represents one-fourth of the section of the circumscribing cube
throngh the centres of opposite edges of the cube, and the
parallelogram (,0,D, A one-fourth of that through two opposite
edges and two diagonals of opposite faces.

Taking, therefore, eight points, 0,0, 0,0,, O,0,, &c., Oy, in
the octahedral axes of the circumscribing cube (fig. 9, Plate
IL.), each equal to O,0, (fig. 37, Plate IV.) in the solid, or
marking them in the perspective by proportional compasses
as described in § 86. Join together C 0, C,0,, C,0,, Cy0,, &c. ;
and also 0,0,, 0,0;, &c., as in fig. 9, and we have the four-faced
cube inscribed in the cube. Since in fig. 9, 0,d,=0,d,, and D.d,
represents D.d,, fig. 37, it is evident that every edge of the
four-faced cube such as o0, is bisected by a rhombic axis D, d,
in the point d,.

54, If (fig. 34, Plate IV.) we draw o,d,=o0,d; (fig. 87), pro-
duce o, to o;, and make d,0,=d,0,; on 0,0, as base describe
an isosceles triangle (J,0,0,, having its equal sides C,o0,, C 0,
each =00, (fig. 37).

Then Ci0,0, will represent on a plane surface a face of the

four-faced cube ; and a net of 24 of these faces all equal to
each other when folded up will form a solid four-faced cube,
which can be accurately inscribed in a skeleton cube whose
edges are all equal to 0,0, (fig. 9, Plate 1L.).
. 95, If we compare fig. 37, Plate IV., with fig. 9, Plate IL.,
we sce that o d; is parallel to AC,, and C,d, cuts AC, produced
in M, AM being taken equal to m. Hence, by similarity and
symmetry of construction, we see that every face of the four-
faced cube cuts one of the three cubical axes at a distance =
AC, ancther at m times AC, and is parallel to the third.
Hence, taking AC=1, then 1 m « may be taken as the
symbol for the four-faced cube.

Unity, m, and w being the three indices of this form.

56. If m be represented as a fraction by ;—z, then oo O m is

h
Naumann’s symbol, 4 %k o Miller’s, 1* Brooke, Levy, and
Des Cloizean’s.
57. m=4 occurs in crystals of pyrite; m=24 in perowskite ;
m=4 in diamond and perowskite ; m=42 in argentite, blende,
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diamond, pyrite, and perowskite; m=2 in argentite, copper,
cobaltine, cuprite, fluor, gold, gersdorfitte, garnet, magnetite,
pyrite, percylite, salt, and silver; m=2% in cubane; m=%§in
copper* and fluor; m=3 in amalgam, fahlerz, fluor, hauerite,
and pyrite; m=4 in cobaltine and silver; m=>5 in cuprite ;
m=40 in fluor.

58. When m=1, the symbol for the four-faced cube becomes
1100, or the four-faced cube becomcs the rhombic dodeca-
hedron. When m=oc0, the symbol becomes 1ooco, which
18 that of the cube, each of whose faces cuts onc of three
cubical axes and is parallel to that of the other two.

59. Hence fig. 9, Plate 11., shows that the four-faced cube
is a form of an infinite number of species, the points such as
0, 05, &c., in the octahedral axes lying between $40, when it
is the rhombic dodecahedron, and O, when it becomes the cube.

Constructing fig. 14, the skeleton cube, in wires, and the
octahedron as shown with the lines passing through ¢ and d in
elastic strings, as before; then by pulling symmetrically all
the peints o;, 0,, &c., from A4o,=140, up to O, all the forms
of the four-faced cube, though infinite in number, will be
represented to the eye in a finite space of time.

To obtain the Ratios of the Octahedral und Rhombic Axes of the
Jour-faced Cube to those of the circumseribing Cube.

AM _m

40,1

60. (Fig.37, Plate IV.) tan M(C,4d=

angle D, A40,=45° by construction.
Hence in triangle 4d,0,, d,C,4+ Cyd, A+ 45°=180°.
Cod i A=135°—d,C,A.
Therefore
sin Oy, A=5sin(135°— dIOgA) . .
=cos (90°—185°+d,0,4)=cos (d,0,4—45°) ;
. ~ Ad,_sind G4 sind,C,4
But in triangle Ad, 0y, 2o = 0 2 4™ 05 (4,0, — 45°)
_ sind, 0,4
T cos d,0,4 cos 45°+sin d,0,4 sin 45°
__ tand Cpd _My/2
JF(1+tan d,0,4) 14+m
But 40,=1 and AD,=,/3.

Therefore Adl=1 ™ _ AD,.

+m
But Ady=Ad, and AD;=AD, and o,d, is parallel to 0,D,.
Ao, Adg;_ wm .
Therefore 40" 4D T+m or doy= ; +mA01.
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Hence we see that the ratios of the octahedral and rhombic
axes of the inscribed four-faced cube to those of the circum-

scribing cube are each equal to 7 -ZL Calling this ratio R, and
m :

1
putting it under the form R::-—i; we see that for the cube
14— '

» m
m=00, =1; and for the rhombic dodecahedron m=1, and
" therefore R=1.
Hence for the four-faced cube R varies from 1 to 4
When m=§, R=; m=%, R=§; m=4%, R=4%
7

5
—3 P—3. gy —2% —7 .
m g; R_E’ m—2: "3?: —%: R—TU:
m=3%, R=%; m=38, R=4; m=4, R=%;
m=5, R=%; m=40, R=49

61. To inscribe the twenty-four faced trapezohedron in the cube.

(Fig. 81, PlateIV.) Describe the square AC,D,C,=one-fourth
the face of the cube 0,0,0,0, (fig. 27). Join AD;. Produce
D,C; to Oy, and C,4 to D;. Make C,0, and AD; each=AD,.
Join O, D,. Produce AC, to M,, and take AM=m, AC, being
1, and m any whole number or fraction greater than unity.
m determines the particular species of the twenty-four-faced
trapezohedron.

Join O,M meeting AD, in d,. In AD, take Ad,=Ad,.

Join d;M cutting A0, in o,. Join C,0, and O\d,.

Then in (fig. 11, Plate II.), describe fig. 27, Plate IV, and
take the eight points, o,, 0,, &c., 05, in the octahedral axes so that
Ao, Ao 0 '

A_OIIZZ-OZ—Z (fig. 11), = A—Oi (fig. 81, Plate IV.). And the
twelve points d,, dy, &c., d,, in fig. 11, Plate II., so that

Ad, Ad, Ad 1
ZﬁzAD:=A_D; (fig. 31, Plate IV.), as described Tn § 86.

Then joining the points C, d, and o, as shown in (fig. 11,
Plate I1.) the twenty-four-faced trapezohedron will be inscribed
in the cube. = )

62. If (fig. 39, Plate IV.) we describe a triangle having one
of its sides C,0,= 0,0, (fig. 31), another side 0,d,=(d, (fig. 31),
and its third side o,d,=o0,d; (fig. 81) ;

Then, on the other side of the base C,o, (fig. 39), describe
the triangle C,d,0, similar and equal to the triangle C,d,0,.

C,d,0,d, will represent on a plane surface a face of the
twenty-four-faced ~ trapezohedron, and 24 " of these faces,
formed into a net and .folded together will make & sqhd
twenty-four-faced trapezohedron, which can be inscribed with

VOTL. IL, - 2F ’ :
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a skeleton cube whose face =0,0,040,, fig. 27, in the position
shown in (fig. 11, Plate II.).

63. Since (fig. 81) 0,d, cuts AM in M, and d;o, cuts A0,
also in M, and comparing this with fig. 11, Plate 1I., we see
that every face of the twenty-four-faced trapezohedron cuts
one cubical axis at a distance equal AC,, and two other cubical
axes at m times this distance. o

Taking AC, as unity, we see that the three indices of the
twenty-four-faced trapezohedron are 1, m, and m. Its symbol,
therefore, is 1, m, m.

Representing m as a fraction by %, Naumann’s symbol is

3
m Om; Miller’s k, k, k ; Brooke, Levy, and Des Cloizean’s a*
64. m=4% occurs in crystals of galena and garnet; m=3% in
argentite, gold, and tennantite ; m=2 in amalgam, argentite,
analcime, boracite, cuprite, dufrenoysite, eulytine, fahlerz,
franklinite, flnor, gold, galena, garnet, leucite, pyrite, pyro-
chlore, sal-ammoniac, sodalite, smaltine, and tennantite;
m=5% in perowskite; m=4$§ in fluor ; m=3 in blende, copper,
fahlerz, fluor, gold, galena, magnetite, pyrite, perowskite, pyro-
cklore, and spinelle ; m=4 in sal-ammoniac and kerate ; m=5 in
galena; m=6 in magnetite; m=10 in magnetite; m=12 in
blende; m=16 in galena and magnetite; m=40 in pharma-
cosiderite, -

65. To find the ratios of the rhombohedral and octahedral awxes

of the twenty-four-faced trapezohedron to those of the
circumsertbing cube.

The right-hand side of the (fig. 31, Plate IV.) being the
same by construction as that of (fig. 37, Plate 1V.) for the
four-faced cube.

Ad,= 1 7
m
m —
But ﬁg. 31, Ad5=.Ad1=m*\/2.
AM m+1 m+1
tan Ad M:-:m —_——
T Ad, mx/% V2 ~
but sin 0,4d,= %£5=_: and cos OlAd5=fiﬂf—_-L/2_

40
also sin do,d;=sin {180°— (4dM+0,4d)). V3
=sin (AdM+ 0, Ad,).

=sin Ad, M cos 0 Ad, + cos Ad.M sin 0,4d,.

Ad m .
AD,, or E—i=m_+_1_ as in § 60.
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Ao, __sin 4d .M
Ad;  sin dody
sin Ad.M

—— 5 Ad,,

sin Ao,d,

But in triangleb Aodyg

Therefore Ao,=

sin Ad M . m\/3
(m+1)(smAd M cos O, Ad +cos Ad M sin O, Ad,)
m«/z
(m+ 1) (cos O0,4d,+ cot Ad, M sin 0,4d)
m\/ = m\/g
m+1){\/2 2 1?; m+1+1
V3 m+14/3

40,

=1

1 +_1_+ 1

m m

Hence the ratio of the rhombic axes of the twenty-four-
faced trapezohedron to those of circumscribing cube, or

Ad, 1
AD 3 and the ratio of the octahedral axzes of the
1 + =
Ao 1
twenty-four faced trapezohedron, or =
Aoi ]+_1.+l
m

66. Representing % as I, and 4% I 0 as R,

R,=unity divided b;} the sum of the reciprocals of the
first bwo indices taken in order of magnitude, and

R,=unity divided by the sum of the reciprocals of the three
indices.

When m=4%¢ E,=+%and E,=2%
m=3 B=3 By=4%
n=b B=% Ei—i
n=y Ey= Fomiy
m=% Ri=F By=%
m=3 R,=% B,=%
m=t B=i E=
m=5 EB=% E,=%
m=10 Bj=12 RE,=%
m=12 Bj=34 R,=%
m=16 B,=1¢ R,=%
m=40 R, =49 H,=%%

ol

67. When m=1, R,=1}, and E,=1, and the twenty-four~
faced tra.pezohedron becoroes the octahedron.
272
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When m=0c0 and 1—:0, R,=1 and R,=1, and the twenty-
m

four-faced trapezohedron becomes the cube.

Hence, referring to (fig. 11, Plate I1.) we see that the twenty-
four-faced trapezohedron is a variable form of an infinite
number of species, varying from the octahedron as one limit
to the cube as the other.

If we represent this passage as in the instances of the three-
faced octahedron, § 41, and four-faced cube, § 59, we must
raise the eight points o), 0,, &c., og, from o, equal 3 A0, in the
octahedron (fig. 14) to O,, fig. 8; at the same time raising the
points d,, d,, &c.; d, along the lines AD,, AD,, &c., from d,,
dy, &c. (fig. 14), equal one-half AD,, to the point D, D,, &c.
(fig. 8); taking care that the point d shall have such a relation
to o that two adjacent triangles on each side of Co are in the
same plane,

68. To inseribe the siz-faced octahedron in the cube.

(Fig. 85, Plate 1V.) Describe the square AC,D,C, equal
one-fourth of the square 0,0,0,0; (fig. 27). Join AD,. Pro-
duce D0, to O, and C,4 to D,, making C,0, and 4D, equal
AD,. Join O, D,. Produce AC, to M and N, Taking AC,=1,
make AM=M and AN=n; m being any whole number or
fraction greater than unity, and » any whole number or fraction
greater than m.

Join C,M, cutting AD, in d,. Take AD;=Ad,. Join d,N,
cutting 40, in o,. Join Cyo,.

Then, in fig. 27, taked12 points, d,, dy, &c., d,y, in AD,,

: 4 Ad, ,
AD,, &c., AD,,, so thaﬁ A—Di’ xﬁj’ Cs 7 Di: are each equal
to :f%, fig. 85, which can be easily done with proportional

1
compasses..

Also, in fig. 27, take eight points, o), 0,, &c., o, in 40,
40,, &c., A0, so that A% A% go A0 _ Aoy o o

2 80 Vg 70, 40, " 40, 40, "€ °

Join the points. C, d, and o as in (fig. 10, Plate I1.), and
the six-faced octahedron inscribed in the cube will be shown
~ in perspective. In a model showing the solid six-faced
octahedron inscribed in a skeleton cube, each of the lines
0,0, 0405, &c., Og04, will be equal 0,0, fig. 35, and each of the
lines Dd,, Dydy, &c., D,,d,,, will be equal D,d,, fig. 85.

69. Fig. 36, Plate 1V. Draw a triangle, (,0,d,, such that
G0y, fig. 36,=0o, fig. 35; Cd,, fig. 36,=0,d,, fig. 35; and
0,dy, fig. 86,=0,d;, fig. 35, v
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Then C,0,d, (fig. 36) is a face on a plane surface of the six-
faced octahedron which can be inscribed in a cube, each of
whose faces are equal 0,0,0,0,, fig. 27. -

Forty-eight trlangles, 51mllar and equal to Cjo dz, a,rra.nged
as a net and cut out of cardboard, will fold up into a solid
model of the six-faced octahedron. ) ’

70. Each face of the six-faced octahedron, if produced, cuts
one axis of the cube at the distance =1, another at the distance

. =m, and the third at a distance n from the centre of the cube.

The three quantities, 1, m, and n are termed the three
indices of the six-faced octahedron.

Its symbol, therefore, is 1,m, n; Naumann’s symbol is nOm.

If the three fractions 1, 5, 5 be brought to a common de-
nominator, and the three numerators divided, if they possess
any common factor, by that factor, be represented by 4, £, I,
these being whole numbers, then &, %, ! is Miller’s symbol, and

b" b"bl is that of Brooke, Levy, and Des Cloizeau.

71. The form 1, & o5 64 occurs in garnet ; 1,8, %in pyrlte
and gold; 1, 4 B 2 in linneite; 1, % 4, 4 in garnet ; 1, 1§, L% in
linneite; 1, ¢, 8 in amalgam, cobaltine, cuprite, dlamond
fahlerz, ga,rnet hauerite, magnetite, and pynte~" 1, £, 8 in
pyrite; 1, 4, 5 in boracite and pyrite; 1, %, 10 in pyrlte, 1,
2,4 1in ﬂuor, gold, and pyrlte, 1, 2,10 in pymte 1, % - in
ﬂuor 1,48, 4 in fluor; 1, %, 7 in ﬂuor 1, 3, Z! in magnetite;
1, 4, '8 in galena.

72. To ﬁnd the ratios of the rhombohedral and octahedral
axes of the siz-faced octahedron to those of the circum-
seribing cube.

In fig. 85, Plate 1IV., the mdes of the square AC,D,C, are
by construction equal to unity. Hence AD,=,/9, and angle
D,AC,=45° . Also AM=m by construction.  Let angle
AC,d;=a. Then Ad,C,=180°—(a+45). '

Then cos a—-A—02=1,
m = m
and in triangle Ad 1Ca s
dy 8in q gin a
AO ~&in {180— (a+45)} sin (a+ 45)
A sin a 1
150 a cos 45+ cos a 5in 45 y/1+ /7 COS a

-2 _1

11 f4+1 7771

m
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Ad, 1
AD 1y +1
Hence the ratio of each rhombxc axis of the six-faced octahedron

Therefore

to that. of the circumscribing cube is -—1—1, or of unity divided

T
by the sum of the reciprocals of the two smaller indices of
the six-faced octahedron.

78. Again in  (fig. 85, Plate IV.), in the parallelogram
0,0,D4,, 0, A=0,D;=1, andC 0,=ADs;=,/9; also Ad;=Ad,

=2
T+L
Let y=0,4D, and B=Ad,N. Then Ao,ds=180°—(B+7).
But 40;#=0,D2+ ADg=1+2=3.

and 40,=,/3.
Also sin y = 0141(;5__\}_ and cos 7_..E_:;?2’
Intriangle NAd, cot B-%—Ad
n
Also in triangle Ao,d;.
4o, _ sin 3 . sinf
Ady sin{180—(B++)} sin(B+7y)
sin 3 1
smﬁcos-y+cosﬁsm-y cos y+cot 3 sin y
Ad V3
Hence 4o,=
VA Ad 1 /T
V3w V3 4d,
— 3 AQ
1.1 .1
(\/_) Vats 144
Ao 1
And 29—
40, 14 1+l

Hence ratio of the octahedral axis of six-faced octahedron

is to that of the circamscribing cube as 1 , or unity
1

1+_+~
divided by the sum of the reciprocals of its three parameters.

_Ad
74, Let B,= —ZT)’ and R,= i



N
(o=
o

For the form 1 §% 64 R =54 R,=1
153 R=} RE=%
14 2 R =% R,=%
14 4  R=4 R =4
138 4% Ri=4F R2=’.1§%
13 38 R=2 R,=1%
12 8 R =23 R,=4%
1 —gr 5 R1=g~ R2=.g-
12 10 R =3 R,=1¢
12 10 R =% R,=8
1 1?1' 151‘ R1=%—<1T Rz=%
1 —g« 7 R1=T% R2=~111-
13 3 m={ E-4
14 8 . R]_:% R2=_1-8_1

75. Referring now to (Plate IL., fig. 10), we may observe that
the six-faced octahedron is the form from which all the others
represented on that plate are derived. :

76, When the indices m and n are equal, and both greater
than unity, the six-faced octahedron (fig. 10) becomes the
twenty-four-faced trapezohedron, fig. 11, in which case two
adjacent faces over the edge (o become in the same plane,
and the 48 faces of the six-faced octahedron are reduced to
the 24 faces of the twenty-four-faced trapezohedron.

77. When the index » becomes infinite, and m is some
number or fraction greater than unity, the six-faced octahedron
becomes the four-faced cube (fig. 9), and two adjacent planes
over the edge Cd become in the same plane, and so the 48
faces of the six-faced octahedron are reduced to the 24 faces of
the four-faced cube.

78. When the index m becomes unity, and n is some
number or fraction greater than unity, the six-faced octahedron
becomes the three-faced octahedron (fig. 18), and two adjacent
faces over the edge od become in the same plane, and so the
48 faces of the six-faced octahedron are reduced to the 24
faces of the three-faced cube. '

79. When the two indices m and n are both equal to
unity, the six-faced octahedron becomes theoctahedron (fig. 14),
and the six faces round each octahedral axis become in the
same plane, and the 48 faces of the six-faced octahedron are
reduced to the eight faces of the octahedron.

80. When the index m = unity, and n becomes infinitc,
the six-faced octahedron becomes the rhombic dodecahedron
(fig. 12), and the four faces surrounding the rhombic axes are
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in the same plane, and the 48 faces of the six-faced octahedron
are reduced to the twelve faces of the rhombic dodecahedron.

81. When both the indices m and n become infinite, the
six-faced octahedron becomes the cube fig. 8, and the eight
faces surrounding the cubical axes are in the same plane, and
the 48 faces of the six-faced octahedron are reduced to six
faces of the cube.

82. By giving the necessary values to m and n, the formula
belonging to any of the forms in Plate II. may be derived
from those calculated for the six-faced octahedron. If fig. 10
be constructed, the outlines of the circumscribing cube in wire,
and the 48 triangles Cdo in elastic strings fastened to the
skeleton cube at C, and strings tying together the lines Od( and
odo at d, and the four strings Od meeting in o, and these be made
to pass over pulleys at D and O; then by a proper adjustment
of the lengths of Oo and Dd, taking care that the eight lines
Oo and the twelve lines Dd are the same in length for each
particular form,—the 48 triangles of the elastic six-faced
octahedron may be made to assume the shape of any holohedral
form of the cubical system. : :

83. Whenever faces parallel to different forms of crystals
occur in the same crystal, such as is shown in a crystal of
native copper (fig. 29%, Plate IV .*), these faces are always
parallel to those of their respective forms when inscribed in a
cube, every other form having the same invariable position with
respect to the cube, as shown in (Plate II.) Faces parallel to
those of the cube are marked 5, C,, C; ; octahedron o,, o,, 04, 05;
rhombic dodecahedron d,, d,, d;; &c., and H,, H,, &c., those of
a four-faced cube are all shown on the same crystal.

84. It will also be seen by reference to (fig. 29), that the
intersections of the faces of the crystal or the edges between
0, H,, d,, H;, C,, Hg, d,, and H,are lines parallel to one another,
as also are those of C,, H,, d;, Hy, C,, H,, dg, Hy,. . Faces
whose intersections are thus parallel are said to belong to the -
same zone, for a reason to be shown presently. .

85. (Fig. 30%, Plate IV.*) Let the three planes CDGH,
DEKH, and EFLK be perpendicular to the plane GHKI, in-
tersecting it in the lines GH, HK, and KL. From A, a point
in the plane GHKL, draw AM perpendicular to GH, AN to
HK, and A0 to KL. Through 4 draw 4B perpendicular
to the plane GHKL. Then it may be easily shown by the
Eleventh Book of Euclid, that CG, DH, EK, and FL are
parallel to 4B ; also that AM is perpendicular to the plane
CDHG@G, AN to DEKH, and AO to EKLF. Also DH perpen-
dicular to GH and HK, and EK perpendicular to KH and
KT, ‘
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AM, AN, and A0 are called normals from the point O to the
plane to which they are respectively perpendicular,

Now the inclination of the plane CDHG to the plane DHEK
over their intersecting edge DH is measured by the angle
MHN, MH and HN being drawn through the point H,
perpendicular in each of the planes to their common intersec-
tion DH. Similarly the angle NKO measures the inclination
of the plane DEKH to the plane EKLF over the edge of

_their intersection FK.

In every quadrilateral lineal figure drawn in the same plane
the four angles of the figure are always equal to four right
angles, and in the plane GHKL the angles AMH, ANH,
ANK, and AOK are all right angles. . Hence the angle
MHN=180°—MAN, and the angle NKO=180°—NA0.

In other words, the normals drawn through a point perpen-
dicular to two intersecting planes, make with each other an angle
which is the supplement to that which measures the inclina-
tion of these planes to each other over their intersecting edge.

86. The power of representing the combination of faces of
crystalswitheachother such as (fig.29%, Plate IV.*) is necessarily
limited to those of comparatively few faces. But, taking ad-
vantage of the relationship of the inclination of faces of crystals
measured over their edgesof intersection to that of their normals
drawn from a certain point within the crystal, Professor
Neumann, of Kénigsberg, devised a system by which the
relationship of all the forms of any number of crystals might
be graphically represented at one view. - - :

For instance, to represent the relationship of all the forms
of the cubical system to each other, we suppose the cube (fig.
27, Plate IV.) to be inscribed in a sphere whose centre corre-
sponds with 4, the centre of the cube. From this centre 4,
normals are drawn perpendicular to every face of the cube,
and to those of every form which can be inscribed in it. -

The points where these normals cut the surface of the circum-
scribing sphere are called the poles of their respective faces,
and the arc of the great circle between any two poles is the
supplement of that arc which measures the inclination of their
respective faces over the straight edge of their intersection.

87. Referring to (fig. 27, Plate 1V.), we see that AC, and
AC,, the normals of opposite faces of the cube, are in the
same straight line, as also are AC, and AC,, AC; and A0 ; also
that the three axes C,C,, 0,C,, and C,C, are perpendicular to
each other. The six equal lines 4C,, AC,, &c., AC are equal
radii of a sphere, which can be inscribed in the cube, having
A for its centre and touching the six faces of the cube in their
poles, C,, 0y, &c., C,.
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Up(_)n this sphere we may project the poles of all the faces of
the. different forms (fig. 9 to fig. 14, Plate IL.), which can
be inscribed in the cube.

. Let (fig. 81% and fig. 32%, Plate IV.*) represent the pro-
Jections of two hemispheres of this sphere upon the plane
of the paper.

Let C,0C; and 0,0, (fig. 31¥) be two diameters intersecting
ab right angles in (,. Also C,C; and C,C, (fig. 82%) be two
diameters intersecting at right angles in C,.

Then O, 0,, C,, &c., (,, represent the poles of the six
faces of the cube on the sphere of projection. Also the eight
equilateral spherical triangles 0,C,C,, 0,00, 050,C, &c.,
divide the sphere of projection into eight equal octants.

88. Bisect each of the twelve arcs C,C,, 0,0, C,C, C,C;,
&c., by the points D), D,, D,, and D,,; these twelve points
will be the twelve poles of the rhombic dodecahedron on the
sphere of projection (figs. 31* and 32%, Plate IV.*), or the
twelve points where the rhombic axes 4D, 4D,, AD,, AD,,
&c., of fig. 27 eut the surface of the sphere of projection
inscribed in the cube.

89. Join C,D;, C,D,, C,D, by arcs of great circles
meeting in O, ; this will divide the octant of the sphere C,C,C;
into six equal and similar spherical triangles.  Let this
be done to each of the other octants. Then (fig. 81* and
fig. 32%, Plate IV.*) the eight points 0,, 0, &c., U5 will
represent the eight poles of the octahedron on the sphere of
projection.

The sphere of projection is thus divided into 48 eqlual
and similar but right and left-handed spherical triangles,
indicated by the triangles COD, with different indices to the
letters.

90. Any great circle of the sphere of projection is called a
zone circle, and the poles of all faces which are in that great
circle are said to lie in the same zone, and their intersections
will be parallel to each other (see § 84 and 85).

91. We see in (fig. 9, Plate II.) that the normal to any face
such as C,0,0,, must, by the symmetry of construction of the
four-facod cube, pass through some point in the line Cyd,.
Hence in the sphere of projection (figs. 81* and 32%, Plate
IV.*¥), the 24 poles of any four-faced cube will lie in each of
the 24 arcs CD.

92. The normals to any face of the twenty-four-faced trape-
zohedron, such as Oyd,0,d, (fig. 11, Plate IL), must, by
symmetry of construction, pass through the line C,0,. Hence
in the sphere of projection (figs. 81* and 82%, Plate IV.*), the
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24 poles of any twenty-four-faced trapezohedron will lie in
each of the 24 arcs CO.

93. The normals to any face of the three-faced octahedron (fig.
13, Plate I1.),such as C,0,C,, must, by symmetry of construction,
pass through the line d,0,. Hence in the sphere of projection,
(figs. 31 and 32, Plate IV.), the 24 poles of the three-faced
octahedron will lie in each of the arcs DO.

94. Hence in the same zone C,D,C,D,C.D,,0,D, there will
be four poles of the cube, 0, C,, C;, C,; four poles of the
rhombic dodecahedron, D,, Dy, D,;, D,; and eight poles of the
four-faced cube.

The same will be true of the two zones C,D.C, and C,D,C,.

Again in the zone C,0,D,0,C,0.D,,0,C;, there will be two
poles of the cube, C; and C;, two poles of the rhombic dodeca-
hedron, D, and D,;, four of the octahedron, O,, O,, Oy, and O,,
four of the three-faced octahedron, and also four of the twenty-
four-faced trapezohedron, will lie.

The same will also be true for the five other zones, C,0,D,,
C,0,Dy, C,0,D,, C,0,D,, and C,0,D,.

95. The 48 poles of any six-faced octahedron will, from the
symmetry of its construction, occupy similar positions within
the 48 spherical triangles CDO (figs. 31* and 82%, Plate IV.%).

96. In each of the 48 spherical triangles CDO (figs. 31 and
32, Plate IV .*) is marked a notation for each of the 48 poles
of the six-faced octahedron in terms of its three indices. The
order in which the three indices 1, m, and n are written, mark
the distances at which the face of the six-faced octahedron
corresponding to the pole marked on the sphere of projection,
cuts each of three cubical axes taken in the order AC,, AC,,
and A€, (fig. 27, Plate IV.). When the index has a negative
sign placed over it, it signifies that it cuts the axis AC; pro-
duced in the direction AC,, AC, in AC,, or AC, in AC,.

Thus the spherical triangle 0,D,0, (fig. 31*, Plate IV .*) has
marked in it the indices m, 1, n, which indicates that the face
Cydo, of the six-faced octahedron (fig. 3, Plate 1.) cuts the axis
A0, produced at the distance m x AC,, the axis A0, at the point
C,, and the third axis AC, produced, at nx AC,.

Again the indices 7 1 i, in the triangle C,0,D, (fig.31%, Plate
IV.*), show that the face C,o.d, of the six-faced octahedron
(fig. 8, Plate I.) cuts the axis AC, produced at a distance n x 4AC;,
the axci’s AC, at the point C,, and the axis AC, at a distance
m x AC,.

97. The indices marked on (figs. 81% and 82%, Plate IV.*),
enable us readily to find the notation for any face of any form
in Plate II.

In (fig. 81%, Plate IV.*) the indices m 1 7 in triangle C,0,d;
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signify that the face of the six-faced octahedron marked C,0,d;
(fig. 10, Plate II.) cuts the axis AC, at a distance m from 4,
the axis AC, et C,, and AC, at a distance » from 4.

The indices m 1 nin the triangle 0,0,D; indicate that the face
of the six-faced octahedron marked C,0,d;, fig. 10, Plate IL,,
cuts AC; at a distance m, 40, at C,, and AC; at a distance n
from 4. ‘

98. Hence n without any sign over it signifies that the face
of the six-faced octahedron which it indicates cuts the cubic
axis C,4C; in the direction of AC, produced; if it has the
sign — placed over it, it signifies that the face cuts the axis 1n
the direction of AC, produced.

Now if m be infinite, represented by the symbol o, or lo’

this signifies that the face cuts the axis neither in the
direction A0, nor AC,, and that if produced ever so far in
either direction it will not cut the axis ;40 and is there-
fore parallel to it. Hence when m=o0, i and m indicate
that the face is parallel to the axis, to 4C,; if m is in the
first place, to 40, if in the second, and to AC, if in the third
place. : '

99. Now, if in the triangle C,D,0, (fig. 31%, Plate IV.¥),
whose indices are m 1%, we make both m and » infinite, since
% and oo are the same, we see that oo 1 o is the index of
the face 0,0,0,0; of the cube (fig. 1, Plate 1.); also that,
substituting the sign o for both m and 7, the same notation
o 1 oo stands for each of the eight triangles C,0,D,, C,0,D,,
0,0,D,, C,0.Dg, C,0.Dg, C,0.Dy, 0,0.D,, and C,0;D;.

100, When n alone 1s infinite in the index m 1%, m1 o is
the index of both C,o,d; and C,0,d;, or of the face C,0,05 of
the four-faced cube (fig. 9, Plate IL.).

101. When n=wo, and m=1, the index m 1 % becomes
11c, which is the symbol for the four triangles C,d0;,
C,ds0;, Cy0,ds, and Cyo,d,, or of the face U,0,0,0; of the rhombic
dodecahedron (fig. 12, Plate IL.). :

102, When n=m, the index m 1% becomes m 1 m, which is
that of the two triangles C,0.d, and C,dyo,, or of the face
Codgo.d. of the twenty-four faced trapezohedron (fig. 11,
Plate I1.). A

103. When m=1, the index m 1% becomes 1 1 %, which is
that of the two triangles Cyo.d;, Us0,d,, or of the face 0,050,
of the three-faced octahedron (fig. 13, Plate II.).

104. When m=1 and n=1, the index m 17 becomes 111,
which is the same for the six triangles, 0,0,d,, Os0,d;s, Cy0,d,,
Og05d10s Cg05y and Cyo5d,, or of the face C,0,0; of the octa-
hedron (fig. 14, Plate IL.),
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105. To find the normal to a plane from the centre of the
cubical axes in terms of the indices of that plane.

Let BOD (fig. 33%, Plate IV.*) be a plane cutting the three
cubical axes 4B, AC, and AD, in the points B, 0, and D. Let
AB=a, A0="b, and AD=¢, be the three indices of this plane.

Through A draw AE perpendicular to BC in triangle ABC.
Join FD.

Through A draw AF perpendicular to D¥ in triangle ADE.

Then AF is perpendicular to the plane ABC. Let AF=R,
then R is the normal drawn through A to the plane whose
indices are a, b, c. '

Through F in triangle ADFE draw F@ perpendicular to AF,
and in triangle ABC draw G perpendicular to AB.

Let AH=w, GH=vy, and FG=z, are called the rectangular
co-ordinates of the point F, referred to the rectangular axes
AB, AC,AD, or AX, AY, AZ (fig. 33%, Plate IV.*), is drawn in
perspective. (Fig. 85%) is the triangle ACB of (fig. 33%), drawn
on the plane of the paper; (fig. 34) the triangle DAF of the
same figure, also on the plane of the paper.

Let angle AEF=(. Then by construction AFG=f,
DAF=0, ADF=90°—f3, and FAL=90°—f.

2=FG@=AF sin FAG=R cos 3.

Also B=AF=AD sin ADF=¢ cos (3.

Hence 2=E.

e

Again, in triangle AGF, AG=AF sin AFG=R sin 8.

Also in triangle AD(, let a=angle ABC, then by construc-
tion CAF=a, AGH=q, FCA=90—qa, and FAB=90—a,

In triangle AGH, a=AH=AG sin AGH=AG sin a=

I sin 3 sin a. »
Also in triangle ATB, AE=a sin « and sin a=
[21
In triangle AFE, B=AF=AF sin 3 and sin ﬁ:%

But ®=F sin 3 sin a=1R B AE_E
L A« o«
Again in triangle AGH, y=GH=AGQ cos a=R sin

3 cos a.
In triangle ACE, :

AE:_AO cos CAE="b cos a; and cos a=AE

. B

But =
ut sin 3 15

Hence y=F sin 3 cos a=p. Bt AE_IZ
' ' AE b b
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Hence w=lig, y:—.jﬂf, and =2
a b e

In triangle AGF, R2=AF=FG+ AG*=22+ AG".
And in triangle AGH, AG*=AH*+ HGF*=a"+1".

4 4
Hence R*=1a*+14° }-zg=li,,+i+li‘
a® 1® c®
AndR*:T——}———l— = _1__1,_1___1:
w Tt FtEtE

106. In (fig. 33%, Plate IV .*), join CF and BF. Then because
AF= R is perpendicular to the plane BCD, A¥ is perpendicular
to OF and BF as well as DF.

1
Therefore cos FAD:E: __C
T A/ 1
at b ¢t
1
also cos FAB=1_8= _a
a 1 1 1
a? BT ¢?
1
and cos FAO:E: b
b 1 1 1

PN

Where FAD, FAB, and FAC are the three angles which
the normal makes with the three cubical axes which it cuts at
the distances @, b, and e.

107. Given the indices of any two faces of a crystal of the
cubical system, find the angle between their two normals at
the centre of cube, or the supplement of the angle of inclination
of these two faces over the edge of their intersection,

(In fig. 36*, Plate 1V %)

Let AF'=R be the normal to the plane whose indices are

a, b, c.
AF,=R, be the normal to the plane whose indices are
a, by, c.

Lete=AH, y=HGQ, and = FG be the rectanglar co-ordinates
of the point ¥ (see § 105) referred to the rectangular
axes AX, AY, AZ.

And @, =A4H,, yy=H\G,, 2,=F,G,, similar co-ordinates for
the point F).

Fig. 36* is drawn in perspective. Fig. 87% is the plane
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F,G,GF of (fig. 36%) drawn on the plane of the paper. (Fig.
38%) the plane YAHH,G, also drawn on the plane of the paper.
Join F'F, and GG,. In plane FF,G,G draw KF parallel to
G@,, and therefore perpendicular F\G, ; also in plane GG, H, I
draw GL parallel to HH,. Then KFGG, and HQLH, are rect-
angular parallelograms and their opposite sides are equal.
Then (fig. 37*) FF*=F K+ KI*=(F,¢,—~ K& )*+ G,G*
=(F,G,—FG)*+ G,G*= (z,—2)*+ G, G~
But (fig. 38%)
@,G:=GL*+ G\ I*=HH*+ (G H — LH,)*.
— (AH, — AH)+ (GyH— GBY = (2 )"+ (5, 1"
And FFye= (52" + gy —1)*+ (5~ )"
We have seen (§ 105) that R2=a?+ 42+ 2% and that
R Re
z=—, y=2-, and z=—
o b ¢
2 2
Similarly R*==2+%,°+2? and wlzﬂ, y1=RTl, and zlz%ﬁ
a
In triangle FI"'A, fig. 39, if we put  for the angle FAF, or
the angle between the normals AF, AF, or R and R, at the
point 4; we have
FFe=AF2+ AF*—2AF, . AFcos 0=R?*+ R*—2RR, cos 0 ;
but FF#=(2,—2)*+ (y,—y)*+ (,—2)".
Hence (2,—2)*+ (y,—y)*+ (5, —2)*=R*+ R*—2RR, cos §;
or .2 —2ax, + 22+ y,* — 2y y +y*+ 22— 2z + * =R *+ R*—
2RR, cos 0.
But R2=272+y2+2°® and R*=a%+4 92+ 22
Hence 2@+ v,y +42,=RR, cos 0,
2D ¢
or FE +JR£’R12+Rssz:Ii’li’,1 cos 0.
aa, bb, e,
cos 0=ER, (_1 +l+ 1 ),

aa, bb, " ce

4 4 4
but R‘3=a;2-{-y2-;-z‘l=zz7 +£+Ji and R2=——1~_~
- at o bt ¢t 1+1 1
i ET
1
&1SOR2=-—~——______
IR
a® by aﬂ
1,1.1
Therefore cos §= aa, bby ce

1,11 1,1 ,1
V (@rsts) Getista)
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108. In fig. 33, Plate IV.*, let p,= angle FAB, which the
normal AF makes with the axis 4X; p,=angle F40, which
the normal makes with the axis AY; and p,=argle FAD
makes with AZ,

AX is the normal to a face of the cube which cuts the axis
AX at a, AY at w, and AZ at o; or a;=a, b1=oo=%, and
ﬁ=w=%

_1_ 1

a a

11Nt AL
\/(a—%‘*‘)z &R s

AY is the normal to a face of the cube, or a plane whose

®

and cos p;=

T 1
indices are =7, by="b, and cl=%

1
b
co8 = ———
VAT
at bt c®
AZ is the normal to a plane whose indices are a1=lo, b1=13,
and ¢;=c¢,
1
and cos pg= —
VAT VS
at b c?

The same formulse we obtained in § 106.

109. If p,, p,, p, be the angles which the normal to the plane
whose indices are a b ¢, makes with the three axes 4X, AY,
and 47 ; '

Also, ¢y, 9, ¢, the angles the normal to the plane whose
indices are a, b, ¢,, makes with the same axes,

1
@ 3
Then cos p;=————————=— €08 p,= e
«/L+l+l «/1+1+1
AR atpta
1
and cos p,= ¢
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I 1
nd cos ¢;= 4 o8 q,= by
R S W AN |
af b o a? b2 of
L .
C
and co8 ¢g= —— L.
& 11,1
St
a? bfPoe?
Substituting these values in the expression
1.1 ,1
cos 0= Vb ey
A (B2 (A AL
a® b \e? bR P
we have

cos 0=cos p, cos q,+ cos p, cos g,+Co8 P, COS Gy

110. If, in (figs. 81* and 82%), we substitute for 1, m,n; cos
Py, COS Py, and cos p, in the order in which they occur, we have a
notation for every face of the six-faced octahedron in terms of
Py Py and p,, the polar distances of the face from the three
adjacent poles of the cube; —1, —m, and —n being replaced
by —cos p,, —cos p,, and —cos p,.

Thus if 0 be the angle between the normals of the faces whose
poles lie in the spherical triangles C,D,0, and C,0,D,, or the
supplement of the angle of their inclination over the edge (0,
(fig. 8, Plate I1.),

1 1 2
— 4+ — 41 — 4+ 1

0__ N min mn

N/(Lh%+$<%+%+g 1+141
T m " m n
if expressed by the indices of the six-faced octahedron.
cos = cos p, cos p,+ cos p, cos py+ cos p; cos p,
=2 cos p, cos p,+cos *p,
if expressed by the three polar distances of the pole of any
face from the three adjacent poles of the cube.

111. The notation for each face of a crystal, or of its pole
on the sphere of projection, is expressed in the terms of the
three indices at which a plane drawn through a point in one
of the cubical axes, taken at an arbitrary distance called unity
from the centre where the axes meet, cuts the other two axes
which are at right angles to the former; the indices being
reckoned positive or negative as the points of intersection arc
right or left of 4 along the three axes A0,, 4C,, and AC;.

VoL, I1. - 2a ’ :

cos
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112. The relations of any pole to any other pole, and other
problems relating to crystals, can therefore be solved by that
branch of Geometry of Three dimensions which relates to the
properties of the plane and straight line. This method is used
by Professor Naumann, of Freiberg, in his works on crystal-
lography.

113. The use of the sphere of projection has led to that of
spherical trigonometry for solving all questions of crystallo-
graphy, retaining, however, the notation for the faces of
crystals in terms of the indices of the plane cutting the axes
derived from the geometry of the plane. Professor Miller, of
Cambridge, uses Spherical Trigonometry in his works on

crystallography. '

* 114. The position of any pole on the sphere of projection
may be determined by its polar distance from a definite pole
on the sphere corresponding to the north pole of the terrestrial
sphere, and its longitude by an arc measured along the equator
of the fixed pole, from a definite point in that equator. Just
as the position of any point on the earth’s surface 1s determined
by its latitude and longitude.

In the crystallographic sphere of projection it is more con-
venient to use the polar distance instead of the latitude; the
polar distance being an arc 90° less than that of the latitude.

115. The forms of the cubical system possess the highest
degree of symmetry, each face of every form being symmetrical
right and left from the centre to each of the three cubical axes.
Hence we have seen that the three indices taken positive or
negative, or right and left of the centre, give the notation or
express this degree of symmetry.

116. In (figs. 81* and 32%, Plate IV .*), we see that if in the
sphere of projection we take (, as the north poleand C, as the
south, and C,0,0;C, as the equator, and measure longitude
from C,.

If p be the north polar distance of the face 1 mn and X be
its longitude, _

Then p will be the north polar distance of the eight faces or
poles 1mn, m1ln, mln, lmn, 1Mn, % 1n, m1n, and
19 n, whose longitudes are A, 90—AX, 90+ X, 180—X, 180+,
270—2, 270+, and 360—A.

Also p will be the south polar distance of the eight faces
1m#, m1a, ml1%, Imu, 1m%, W17, m1%, and 1m7,
whose longitudes are respectively the same as the former.

Again, if we take C, as the north pole, C, as the south, and
0,0,0,C; as the equator, and measure the longitude from O,
we have eight faces,mn 1, 1nm, 1am, mnl, mzl, Inm,
1nm, and mn 1, having the same north polar distances and
the same longitudes as the former,
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Also eight more faces mnl, 1am, 17m, mul, mnl,
17nm, 17m, m7l, having the same south polar distance and
longitudes as the former.

The 16 other faces will have the similar polar distances and
longitudes, taking C, as the north and C; as the south pole,
and C,C,C,;C, as the equator.

117. (Fig. 39%, Plate IV *).—In the three rectangular cubical
axes, take AB=1, AM=m, AN=mn.

Through 4 draw AG perpendicular MB, AH perpendicular
NC,, and AK perpendicular M N,

Join NG, HM, and BK meeting in F. Join 4F.

Since the normal from 4 or the perpendicular to the plane
NMB must, by construction, lie in each of the three planes
NAG, HAM, and KAB, AF, their common intersection, must
be the normal to the plane NMB.

Hence AF is the normal to the plane whose notation is 1 m n.
AG is the normal to a plane passing throngh M(, parallel to

AN, or the normal to a face of the four-faced cube whose notation
n
is 1 oo, AH the normal to 1 con, AK to comn or o 1

(Fig. 40%, Plate IV .*).—Let C,, 0,, C, be the poles of the three
rectangular or cubical axes, or the points where AN, AM, and
4B of fig. 39* cut the sphere of projection.

Let k, %, and g be the points where AH, AK, and AG cut
the sphere of projection. Join C.g, C;k, and C,h by arcs of
great circles meeting in f.

Then g is the pole of 1m oo, b of 1 00 n, k of oolﬁn, zmd'fof

1mn.

Leb fOs=py, fO,=py fO1=py Cik=X, Csh=X; Cig=A,

Then p,, p,, and p, will be the polar distances of the pole of
1mmn from O, 0,, and O, taken in order of magnitude.

Comparing § 96 with (fig. 31%, Plate IV.*¥), the face 1mn
cuts the axis AC, in B, AC, in M, and AC,in N to form
(fig. 89%). Hence arc C,f (fig. 40%) =p,, and Cig=A,, 1s its
polar distance and longitude. ‘

The face 1nm cuts the axis A0, in B, AC, in N, and A0,
in M; and (fig. 40%) O,f=p, and C;h=2X,, is its polar distance
and longitude.

Also the face mn1 cuts the axis AC; in M, AC, in N, and
AC)in B; and (fig. 40%) C,f=p, and C,k=A,, is its polar
distance and longitude.

Calling (figs. 81* and 82%, Plate 1V.*), C, the North pole,
C,0,0; the equator, and measuring longitude from Cj, A, Will
be the longitude of 1 m n, 90°—X, of m1n, 90°4-A; of m 1 n,

‘ 2¢2 ’ :
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180°—X; of Tmn, 180°+2A, of Tmn, 270°=X; of w1 n,
270°+ A4 of m1mn, and 360°—A, of 1 mn. '

The north polar distances of these eight faces W}_ll each be p,.

A, the longitude of 1 m @, 90°—2A, of m 14, 90°+A, of
i 1'n, 180°—=X; of 1mm, 180°+X, of 177, 270°—A; of m11%,
270°+ 2, of m 17, and 360°—A, of 1 7. )

Tohe north polar distances of these eight faces will each be
180°—p,.

A, W{)ﬁ be the longitude of 1 nm, 90°—X; of n 1m, 90°+A,
of w1lm, 180°—), of Tnm, 180°+A, of 17am, 270°—A],
of 7 1m, 270°+ X, of n1m, 860°—N, of 1mm.

The north polar distances of these eight faces will each be p,.

The eight similar faces in the southern hemisphere will
have the same longitudes as those corresponding to them in
the northern, the eight north polar distances being each equal
180°—p,.

A w{ﬁ be the longitude of m n 1, 90°—X, of nm 1, 90°+ 2,
of nm 1, 180°=X; of mnl, 180°+A, of mnl, 270°—X, of
nm1, 270°+ X, of nm 1, and 360°—A, of mn 1.

p, will be the north polar distance of each of these eight
faces. :

The corresponding eight faces of the southern hemisphere
will have the same longitudes as the corresponding ones in
the northern, 180°—p, being the north polar distance of these
eight faces.

Hence the 48 faces or poles of the six-faced octahedron can
be expressed in terms of p,, A}, ps Ay, and p,, Ay; and, as all
other forms of the cubical system can be derived from those
of the six-faced octahedron, all faces of those forms can be
similarly expressed.

118. Given p, and A, to determine p, and A,, and also p, and
A, in terms of the former.
From the spherical triangle O, fC, (fig. 40%, Plate IV.*), we
have by the formulae of spherical trigonometry,
cos fCy=cos (,0, cos O f+sin C,Cy sin C, f cos fC,0, ;
-but the spherical angle fU,C; is measured hy the arc g0, at
the equator.
Hence, substituting the values of these arcs given in the
previous section, we have
cos p;=cos 90° cos p,+sin 90° sin p, cos A,
=gin p, cos A,. o
Again, in the spherical triangle fgC,, we have
sin fg _sin fC,qg
sin fC; sin fy C,’




417

but spherical triangle fCyg is measured by arc kC,, and fyC,
is 90°; hence
sin (900—};3)= sin A and sin A, =58 Ps
sin p, sin 90° sin p;
From the spherical triangle C,C, f, we have
cos O, f=cos C,C, cos O, f+sin 0,0, sin C, f cos C,C, f,
or, cos p,=cos 90° cos p,+sin 90° sin p, cos (90°—A,)
=sin p, sin A,
" From the spherical triangle C, fg, we have
sin C,f - sin Cygf or . Smp, _ sin90°
sin fg  sin fU,g sin 90°—p, sin A,
and sin A, = oo Py
sin p,

R oy __COS Py,
Hence cos p,=sin p, cog A, sin Aj=-—L3;
Ssm Py
. . . CO8
and cos p,=sin p, sin A,, sin A,=- Ps
sin

119. To find the angle between the polezs of two faces in
terms of their polar distances and longitudes.

Let C.F be the polar distance of F (fig. 41, Plate IV %),
(', its Jongitude, C\,f the polar distance, and (', the longitude
of f.

Also let O\ F=P,, C, f=p,; C,L=L,, Cyl=A,, and Ff=0.

Then in spherical triangle C,Ff

cos Ff=cos C,F cos O f+sin C,F sin C, f sin FC, 1.

Then angle FC, f is measured by arc LI=LC,—10;.

Hence cos §=cos P, cos p,+sin P, sin p, cos (Ly—A,).

To adapt this to logarithmic computation—
cos @=cos p, {cos P;+sin P, tan p, cos (L,—A,)}.
Let tan a=tan p, cos (Ly—A,). '
Then cos 6=cos p; {cos P,+tan a . sin P}

Cos P, . .
=8 Ls {cos P, cos a+sin P, sin a}
cos a
o8
=98P ¢og (P3—a).
cos a

120. To find the distance between any two poles on the
sphere of projection in terms of the three polar distances
from C,, C,, and C,.

§119. cos O@=cos P, cos p;+sin P, sin p, cos (Ly,—A,)
=cos P, cos p,+sin P, sin p, (cos Ly cos A,
+sin L, sin Ay)
=cos P, cos p,+sin P, sin p, cos L; cos Ag
+sin P, sin p, sin L, sin Ag;
but § 118, cos p,=sin p; cos A, cos P;=sin Py cos Ly
€08 py=sin p, sin'A, cos P,=sin P;sin Ly .
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Hence cos 0=cos P, cos p;+cos P, cos py+cos P, cos p,.

The same formulz which we obtained by geometry of three
dimensions, § 109.

121. To find the polar distances and longitudes in terms
of the-indices.

Referring to § 117 and (fig. 40%, Plate IV.¥), O}, C,, and C,
are poles of the cube, f is a pole of 1m n, g of 1 m oo, b of

loon,kofool , O3 of 1 oo oo, 0 of 01 00, and C; of ;w0 1.
S Oy=py, fC, —sz [Oi=pg Cpk=A}, Ogh=2X,, Cg=2A,.

Then A, is the distance between the poles of o 1 E
and 1, p, that between 1 mn and 1 co 0.

Hence, § 107,

1
[efoR] kl— co8 P].: “—‘—‘.._T_.__..__‘i‘
1+ 4=
/\/1 o n? /\/ _'_mg_l_n2
sec? )\1=1+—c, sec~p1—~1+ +~1
n?
m? 1 1 m?
tan® A, = — tan® p, —m_2+ —= — (1 + 72)
1
tan >‘1=Tz == sec? A,
1
n=1m cob A; tan p,=— sec A,
m
=cot A; sec A; cot p, m=sec A; cot p,
__cot p,
T ein A,

Again A, is the distance between 1o n and 1 oo oo, p, that
between 1m»n and o 1 co.

Hence, § 107, 1
m
CO8 Ay=———— €08 P,= =
«/ 1+ 1+ 4=
771 n
sec? A2=1+_12 sec® p,=m? <1+_1~+_1§>
n mt
tan® )\2=—12 =1+m? <1 + 1)
Vi
n=cot A, tan? p,=m? sec? A,

fan p=m sec A,
m=tan p, cos A,
Also A; is the distance between 1m0 and 10 oo, p, that
between 1m» and w0 o0 1.
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And, § 107, 1

cos )\3=—————1:_—~_T COS py= -—————ib-l-:——i
14+ = /\/1 4
/\/ —{—m2 ’ +m2+n2

1 . 1,1

sec® >‘3=1+,,,_@§ | sec py=mn? (1+ﬁ§+772)
1 1

tan? )\3=’n—®-§ =14n? (1+W)

m=cob A, tan? py;=n? sec? A,
n=tan p, cos A,.

Hence the indices being given, the polar distances and
longitudes can be determined, or the polar distances and
longitudes being given the indices can be determined.

122, To find the polar distances of any two adjacent poles
of faces of the six-faced octahedron, or of the supplement of
the angle over the edge of any two adjacent faces, in terms of
the indices. .

Let 0 be the angle between any two poles adjacent to the
arc OO (figs. 81% and 32%, Plate IV.*), ¢ adjacent to OD,
and i adjacent to C D.

For the faces nm1, mn1l,

1 1 2

— 4+ —+41 241
cos f= L —
1,1 1,1 14141
Similarly for 17m and 1mn we have
2 41

cos 67=—m——%i———i
T+ —+—
Pow

The same is true over every arc CO in (figs. 31% and 32%,
Plate IV .*),

1,11 2,1

3 b
For the faces m 1 nand 1 mn cos rp=m 2% n1= ml - i
1+ 45 1+ 4+
m w mT N
LI Y
. - m” W
For the faces m 1mn, m17% cos 4::*——1——'1-
1+—+5

me P
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123. To express 0, ¢, and ¢ in terms of the polar distances
and longitudes.
Then, according to § 110, if we substitute cos p, for 1,
cos p, for m, and cos p, for =,
We have for the faces nm 1 and mn 1, or
COS g, COS P,, COS Py, and cos p,, COS Py, COS P;.
and cos §=cos p, co8 p, -+ cos p, cos p,+ cos’ p;
=2 co8 p, cos p,;-+cos® p,.
For the faces m 1 n, and 1 mx, or
COS Py, COS P, COS Py, and cos P1s COS Py, COS Py,
and cos ¢=cos p; cos p,+ cos Py cos Pa+ COS® Py
=2 co8 p,; oS p,+ cos? p,.
Also for the faces m 1 # and m 1 7, or
COS Py COS Py, COS Py, and cOS p,, COS Py, COS Pj,
cos Y=cos® p,+ cos® p, —cos?
But referring to § 118 cos? p2—51n~ ps 8in? A,
and cos? p, =sin® Py cog?
Hence cos §=sin® p, sin® A, tsin® Py cos® A;—cos? py
=sgin? p,—cos® p,=2sm? p,—1.
And 14-cos Y =2 sin? p,.

Therefore 2 cos? %: 2 sin? p,,
and cos 7'é-“:sin py=cos (90°—p,).

Whence %:900—193, or $=180°—~2 p,.

This result might have been obtained at once by inspection
from (fig. 31%, Plate IV.*) For p, is the north polar distance of
the face 1 mn, and 180°—p, that of 1 m 2. The poles of both
these faces also lie in the same meridian.

Hence ¢=180°—p, —p,=180°—2 p,.

Again, using the formule § 119, € is the inclination of the
pole of the facee mn1 to that of nm1, p, the north polar
distance of the pole of mn1, and A, its longltude referred to
C, as north pole, and C,C,C; as equator and measured from (.

p, the north polar distance of nm 1 and 90— A, its longltude
referred to the same north pole and equator.

Hence cos 8=cos p, cos 10%+ sin p, sin p, cos (90—2X,)

=cos® p, +sin Py €08 (90—-2
=1—sin? p, +sin® p, cos (90— 22 D3
and 1—cos @=sin? p; {1—cos (90— 2k1)}

Therefore 2 sin? g=2 sin® p, sin® %)_z_zl

and sin gm sin p, sin (45—X)).
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In like manner, since p, and A;; and p; and 90—2X,, are the
polar distances and longitudes of the faces 1mun and m 1 n
referred to O, as north pole, and C30,C; as equator,

oS ¢=C0s Py COS Py-+sin py sin py cos (90—21,),

which gives as above .
sin %’:sin ps sin (45—A,).
124. Given ¢ and ¥, find p; and A,.
"~ We have seen, § 123, that pazgo_%;
also sin g: sin p, sin (45—2,),
sin 2

therefore sin (45 —A;)=— 2
sin }’)3

125. Given y and 0, find p, and A,
§ 123, p3=9o-‘§.

sin d=sin (45—A,) sin p,.
=(sin 45 cos A;—cos 45 sin A)) sin p;;

. 1
t H== _—
but sin 45=cos 45 3
~ 4/3 sin g: sin p, cos A, —sin p, sin A.
Referring to (fig. 40*, Plate IV.*), and remembering from
§ 117, that  p,=5C,4 p=r0y  p=rC
1=y A,=C3h A3=Cg.

From the spherical triangle fg C,, we have

sin fU; _ sinfg sin p, _sin (90—p,) _ cos p,

sin fgC, sin f Cyg sin 907 sind, s A,
Therefore sin p, sin A, =cos p,.
Also from spherical triangle (| fC,, we have

sin f0, _ sinf0, or sinp,__ sinp, _ sinp,

sin fO,0; sinfC,0 sin X, sin (90—X,) cos A,

Therefore sin p; cos A, =sin p, sin A,.

Hence
R | B ] ) . .
4/3 sin S=sin p, cos A\, —sin p; sin A;=sin p, sin \,—cos Py

=gin (90—%’) sin A, —cos (90—%):005-% sin A;—sin ¥
' - o 21# ; 9 f

¥ a =./9 sin = in XY= ° sin =~ in ¥

Hence €08 5 fsin A;=./5 sin 5T sin 5 = sec 45 s'm 5 +sin 5
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and sin A;= {sec 45° sin = —l gin * lﬁ
cos X
9
sec 45° sin g sin 4
cos ¥ sec 45 sin —
. 2 2
sin é cos 45
Let tan® a=___2___0___.
sin 3
sin Q sin 9
Then sin k3=_L {1 4tan? a} =
cos 45 cos ¥ cos 45 cos —t"-’ cos? a

126. Given ¢ and 0, find py and A,.

(Fig. 42%, Plate IV*, )—Let a, be the pole of 1mn, a,
that of 1 » m, and a, that of m 1 n.

Join a,, a, by arc of great circle cutting 00 in f,

and a,, a; by arc of great circle cutting od in ¢;

also 0y, a; by 0, o cuttlng dCy in g,

and Oa, cuttlng dCyin h

Then C,a,=p,, C,g=2A,, 0'10_54.«° 44/, and C,0d=60°; and
let oal_P Cy00,=

Also a,0,=¢ and ea/l_g =0 alf-—

From spherical triangle o, f S0 _8in 00,
T sphencal tn i f sin a,0f sin ofw,

3__ sin P

sin I sin 90°

sin
therefors

. C sin a;e _ sin oo
Also in spherical triangle oa,6 ——2—=— 1
sin eoa, 8in oea,

in @
and S 5 - sin P
sin (60°—L) sin 90°
‘ sin g sin g
Hence o = (60°—T)
and s 2__ sinL sin I,

ging® 80 (60°=L)  sin 60° cos L—cos 60° sin I,
2 .
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.0
sin g sin I
Sin(_g _zé cos L——% sin L
o 3
- 2:1/_3 cot IJ—1
.0 2
sin —
2
2 sin ?
A/gcot L=1+ 2
sin —

2 sin ¢ sin?

Let tan® a= 02 = 2 0
sin —  sin 30° sin

2 2

Therefore 4/3 cot L=1+tan? a=

cos? a
and tan L=,/3 cos® a=tan 60° cos® a.
gin P sin — sing
But wo have seen that = ” == 2 and sin P= 2
gin 90° sin L sin L

Also from spherical triangle C)0a, we have
cos Cya;=cos C0 cos oa,+sin O,o sin oa, cos Cjoa, ;
or cos py=cos 54° 44’ cos P+sin 54° 44’ gin P cos (120°+ L).
=co0s 54° 44" cos P—sin 54° 44/ sin P cos (60°—I)).
=cos P [cos 54° 44’ —sin 54° 44" tan P cos (60°—1L)].
Let tan 3=tan P cos (60°—L).

Therefore cos py;=cos P {cos 54° 44'—sin 54° 44’ tan 3}
=§g:—§ {cos 54° 44/ cos 3—sin 54° 44/ sin 3}
cos p3=°c‘fs g cos (54° 44/ + B).

Also in spherical triangle O,ea,,

: . . sin ¢
sin Cia, _ sin a,e op SDPs _ 2

sin Ciea; sin e0,q, sin 90°  sin (45°—A,)

sin ?l
and sin (45°—~\,)=—_—2
° sIn p,
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Hence on the whole we have the formula

sin ¢
tan?® a=_._._._,.2_____
sin 30° sin Q
tan L=tan 60° cos® a.
sin Q
sin P=g§1—% tan B=tan P cos (60°—L).
cos P
= 54° 44/ .
008 3= — 5 cos ( +03)
sin :l’
and sin (45°—A,)=——=
sin p,

for determining p, and A, in terms of ¢ and 0; all the formulas
being adapted for logarithmic computation.

p, and A, being determined from the values of ¢, 6, and ¢,
m and n can be expressed in terms of p, and A,.

127. By the formulae given in § 124, § 125, and § 126, any
two of the angles of inclination such as ¢, 8, and ¢, over the
edges of a six-faced octahedron, having been observed by the
goniometer, p, and A, can be determined. Again, by formule in
§ 118, p, and A}, p, and X, can be obtained from the values
of p; and A,. :

P, and A, being determined,  and # can be obtained. Now
all the forms of the cubical system are derived from those of
the six-faced octahedron.

Hence by determining 0, ¢, and i for any form of the cubical
system, we can obtain the values both of p, and A;, and also
of the indices 1, m, and =«.

As we advance in this treatise we shall show good reasons
for preferring the polar circular co-ordinates p, and A, to the
linear ratios or fractions m and =,

128. The problems of crystallography being resolved for the
most part into those of spherical trigonometry, may be solved
by means of lines drawn on the surface of a solid sphere.

This being inconvenient in practice, it is usual to project the
points or poles on the surface of the sphere upon those ofa plane,
just as geographical and astronomical maps are projections
from the surface of the sphere upon the plane of the paper on
which the map is drawn. There are three principal projections
of the sphere,—the steregraphic, orthographic, and gnomie.

The steregraphic when the eye is supposed to be placed on
the surface of the sphere and the points in the hemisphere
furthest from the eye are projected onthe plane of the equator;
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considering the point of sight or projection, the pole of the
great circle on which the projection is made.

- In this projection the projections of circles on the sphere arc
either straight lines or circles. :

The orthographic where the eye is supposed to be placed at
an infinite distance from the sphere. In this projection points
on the surface of the sphere are projected on the plane of the
equator by perpendiculars from those points to that plane.

In this case all great circles inclined to the equator are
projected into ellipses on the plane of projection,

The gnomic where the eye is placed in the centre of the
sphere, and the plane of projection is a plane touching the
surface of the sphere.

In this projection all great circles are projected into a
straight line.

From the difficulty of describing arcs of ellipses the ortho-
graphic projection is not suited to crystallographical problems,

The steregraphic is that mostly used by Professor Miller and
other distinguished crystallographers, but there is some trouble
in finding the centres of the arcs of great circles on the sphere
of projection. :

The most simple projection for most purposes is the gnomie.
By either the steregraphic or gnomic projection, many problems
may be very expeditiously solved by simple geometrical con-
structions.

129. Comparing (fig. 14, Plate I1.) with (fig. 27, Plate IV.),
we see that if we take A, the centre of the cube, for the centre
of the sphere of projection, and Aoy, 4o,, &c., Ao, as equal
radii of that sphere,—the eight faces, C,, C,, 0, &c., of the
octahedron will each be tangent planes, touching the sphere
in the eight points o;, 0,, &c., 0,. Because each of these plane
faces are respectively perpendicular to Ao;, 4o,, &c., at the
points oy, 0,, &c.

The projections on the faces of the octahedron will be the
same as in the former case if we regard the sphere of pro-
jection as the sphere inscribed in the cube touching the cube
1n the points 0, C,, &c., C;. '

All the poles, therefore, of all the forms of the cubical
system can therefore be projected on to the planes of the octa-
Ledron inscribed in the cube,—one octant of the sphere upon
each face. In (fig. 14, Plate I1.), as shown in perspective, and
(fig. 83, Plate IV.), on the plane of the paper,—the equilateral
triangle C,0,C; represents the gnomic projection of an octant
of the sphere of projection.

C,C,0, being the projections of three poles of the cube.

Bisect )0, 1n d;, 0,0, in d,, and C,C; in d;.
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dy, d,, and d; are projections of the poles of three faces of
the rhombic dodecahedron.

Join C,d;, O,d,, and O,d, meeting in o;; o, is the projection
of the pole of a face of the octahedron.

(Fig. 43*, Plate IV.*)—B,,E, F,,6, H,,X,,L,,M;, N, P,, Q,
represent the poles of nearly all the known four-faced cubes
lying in the arc of the zone d,C,; B,, &c., in U3d,; By, &c., in
Cyd,; B, &c., in C,dy; B, &c., in C,dy; and By, &c., in Oyd,.
Six poles of each four-faced cube in the octant at equal distances
from 0, C,, and O,.

Rules for finding the position of B, E}, &c., will be given
hereafter.

by, ey, fi, g, by, ky, and 15 b, e, &c., 1;; and by; ey, &c., 1,
three poles of each three-faced octahedron, lying at equal
distances from o,, in the arcs of zones represented respectively
by o0,d;, 0,d,, and o,d;.

v ey Ju o by by by my, 1y, 04, py, and gy by, €y, &c.,y gy
b,y €4, &c., g4, three poles of each twenty-four-faced trapezo-
hedron, lying at equal distances from o, in arcs of zones
represented by o,C;, 0,0}, and 0,C, respectively.

Lastly 4,, B, B, ¥, G, }, K, L,, M, N,, P, Q,, &, 8},
T,U,; A4, B, &c.,U,; A, B, &c., Uy;; A, B,, &c., U,;
4, By, &c., Ug; and A, B,, &c., Uy, six poles of the six-faced
octahedron ; the poles of each particular six-faced octahedron
being similarly situated in each of the six triangles dy,0,,
@,0,Cs, dy0,0,, dy0,0,, d,0,0,, and d,0,C, respectively.

130. To find geometrically the position of any pole on the
gnomic projection (fig. 43%, Plate 1V.%).

In (fig. 44%, Plate IV.*).—Let AC;, AC,, and AC, be three
adjacent cubical axes, rectangnlar at 4.

Let AC,=1. Take AN in AC| produced equal to #.

AM in AC, produced equal to m.

Join O;,N, NM, MC,, C,0,, 0,0y, and C,C,.

Then C,MN is the plane 1 mn, and (,C,0, is the plane of
the gnomic projection. .

Through 4 draw AG perpendicular, O;M meeting 0,C, in g,
AH perpendicular O,N, cutting C,C;in k, and AK perpendicular
to C,0,, catting C,C, in k.

I, g, and k are the projections on (,0,C, of H, @, and K.
Join NG, MH, and C,K in the plane NUC,, meeting in F'; also
join AF. Then, asin § 117, F'isthepole of 1 mn, G of 1 m ,

H of 1 wn, and K of ool-ﬂ%.

Therefore on the plane of projection, 0,C,C,, g is the pro-
jection of the pole of 1maoo, h of 1 cwn, and %k of oolﬁ;
1.0, of the line HM, %G, of the line KC,, ¢C, of the line G
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/> where hC,, kC;, and gC, meet, will be the pole of 1m n.
Through &, in the plane NAC;, draw AE perpendicular to AC,.
Let angle hAC;=A,. Then since angle AHN=9(°, angle
ANH=A,. 10 )
In triangle NAC, tan AN 3=A—N§ or tan )\2=a
hE

Intriangle ALE tan hAE=tan A\,= 10

AB_AC,—2C, _1—EC,
n

RE_1
=" and hE=
Hence AB a2 T n n
- But by similar triangles 2EC,, C,AC,,

hE_Cd_1 Therefore hE:EO’a;
EC, 40, 1
and EO3=1_EO3 and nEC,=1—EC,.
Whence EC,= 1
n+1
But by similar triangles C,40C,, LEC,,
40y 003 104 40,=1 and EC,=
EC,” 00, but 4C;=1 an Ca—n+1
: C,0. C,C.
Hence h1—03=n+ 1, and 03h=n _1'_ 31

Hence £, the pole of .10, is found by taking the point 7

. c,.C
C,C,, that C,hA=_—2173
in G;Cy so that Cyh=_~1=%

Again since tan )\2=1 and angle hAC;=2,, if the angular
n

elements be given, C,C, is the chord of 90° and 7 is the point
where the angle A, protracted from 4 meets C,C;, considering
C, as zaro.

The chord of 90° marked as a protractor is obtainable from
any mathematical instrument maker, or may be readily marked
on the chord of 90° by using any form of protractor.

Similarly it may be shown that gC,= Of‘i , and that ¢ is
m
the point where the angle A, is marked on 0,0, as the chord of
90° C, being zero; and tan )\3=—1. Also kC,= 0,0, » k& being
m m
Tt1
n
the point where the angle A, is marked on the chord of 90°,
0, being zero, and tan X, =2".
1w
Join C,g, O,k, and Cyk. f, the point where these three
lines meet, is the pole of the face of the six-faced octahedron
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ivhose angular clements are p, and A, or whose indices are
man

131. To construct a map of all the forms of the octahedral
system on a face of an octahedron comprised in an octant of
the sphere of projection.

(Fig. 43%, Plate IV.%) Describe any equilateral triangle
C,C,0,.

"Bisect 0,0, in 4, C,C; in d,, and C,C; in d.

Then O, 1sthepoleofloooo 0, ofooloo,a.ndO of wwl,
three poles of the cube.

d, is the pole of w11, d, of 101, and d; of 11 oo, threo
poles of the rhombic dodecahedron.

Join O\ d;, 0,d,, and C,d, meeting in 0. Then o is the pole
of the face of tho octahedron whose symbol is 111,

To place on this octant six poles of the six-faced octahedron
whose indices are 1, £, 2.

In this case A, —36o 52, A,=26° 34/, and A\, =33° 41".

Graduate each of the lines O sy O3c15, C dz, 0,d,, C,d,, and
Cydy, from o° to 45°; considering C,C,, 0 C, and O 10, as
chords of 90° , end makmg the three pomts Ol, C,, O each
zero, as described in § 132.

Let C,F,=36° 52'=(,F,=C,F,=C,F,=C,F,=C,F,

C,H,=26° 34'= OH—OH—OH C.H,=CH,
0,6,=383° 41'= OG OG_OG4—OG=OG

Then E is the intersection of C ¥, O,H,, (.6,
5 » of C Hl, CZ 0 @,
E, 2 of (@, C,F O H6
B, © of C F (J‘; 0 JH
B » of U (' , O,F,
E, of OG4, H, (‘

B, B, E B, E, andL’ will be six poles of the six-faced
octahedron whose 1ndlces are 1, 4,2, and angular elements
A,=86° b2, p,=68° 12, The lines of intersection are not
shown in the plate.

(Fig. 43%, Plate IV .*) has marked on it the poles on the
octant of a sphele of nearly all the forms of the cubical system
which have been observed; all the faces whose poles lie in
the same line having their poles on the sphere of projection
on the same zone circle.

The angular and linear indices of every form are given in
the following table.

Where p,, p,, and p, are the polar distances of each form
from the three poles of the poles of the cube, C), C,, and O,
0, ¢, and 3 the supplements of the angles of inclination over
the edges of adjacent faces determined as in § 123, 124, 125,
and 126. v

§ 124,125, and 126 show how when these angles or any two
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of them are determined from observation, the angular or linear
olements can be determined from them.

The linear elements have hitherto been almost universally
used as a concise means of expressing any form. Their dis-
advantages will be explained hereafter.

The angular elements are in reality more concise, because
they can express the forms they represent to any degree of
accuracy which can be derived from observation.

They have also this great advantage, that by the use of
angles alone they can express the relations of any form to
another without determining the linear elements at all.

Thus in the following table p, for any form gives the incli-
nation of the face for which it stands to that of the adjacent face
of the cube in any combination of these two forms.

Faces of all the twenty-four faced trapezohedrons lie in the
same zone C,od;. Hence the value of p, for any of these faces
gives the inclination of that face to that of the cube in that
zone.

For instance (fig. 43%, Plate IV.*), m, is the pole of a face
of the twenty-four-faced trapezohedron, for which the value of
Py="78° 54/, \;=11° 19, linear elements 1, 5, 5; 1, is the pole
of another twenty-four-faced trapezohedron, where p,="76° 227,
A;=14° 2, linear elements 1, 4, 4.

For m,; p,=15° 48, And for ,; p,=19° 28"

Hence 54° 44/ —15° 48'=Om, ; 54° 44'—19° 28'=0l,; and

T 19° 28" —15° 48" =m,l,.

Results procured by simple subtraction when the angular
elements are used; but only found by retranslating the
linear indices obtained from angular observations of the
goniometer back again into angles, by trigonometrical
formulze,

Again, referring to (fig. 43*, Plate IV.*), we see that (|,

- Uy, Qg Hy, hy, By, f;, N, P, H, all lie in the same meridional
zone. : -

The values of p, for each of these forms enable us to
determine the distances of these poles from each other in the
zone by simple subtraction of angles.
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Table of all the principal forms of the Cubical Systen.
SIX-FACED OCTAHEDRON.

: ,

1m# || Naumann.|| Miller. Xs A A » D yA ] i) Y
A 1836464 082 (64631 44° 33/ 0° 54 ° 55 89° 72" | 45° 27’ | 44° 3% 58° 26/ 0° 54’ 1° 16
Bi1's £l 60 5l 5 43) 38 40| 30 58| 36 52| 64 54 | 55 331 45 0 || 11 29| 11 29 | 50 12
|1 2 2 20 % 4 32 36 52 26 34 33 41 68 12 56 9 42 2 15 5 15 5 43 36
F 1 + 4 20 4 4 31 36 52 14 2 18 26 78 41 53 58 38 20 32 12 15 57 22 37
G 115 15|l 15 015 1115117 36 15 25 1 32 28 69 23 56 24 41 0 16 22 16 22 41 15
Hf1 : 3 30 3 3 21 33 41 18 26 26 34 74 30 57 41 3642 I} 21 47 21 47 31 0
K 1 & 8 80 & 8 51 32 0 7 8 11 19 83 bB7 58 12 32 31 34 42 26 50 12 6
L 1 5 5 50 § 5 31 30 58 11 29 18 26 80 16 59 32 32 19 1| 27 40 27 40 19 28
M1 £101100 510 61 30 58 5 43 9 28 8 6 59 10 31 19 35 10 27 b8 9 48
N 1 2 4 40 2 4 21 26 34 14 2 26 34 77 24 64 7 29 12 17 45 35 57 25 13
P 1 210 00 5 (10 51 26 34 5 43 11 19 84 53 63 33 27 1 29 11 36 43 10 14
Q 1yl Oy i1l 53 24 26 15 15 30 58 76 3 66 19 27 56 13 3 39 51 27 53
R 11 4 4 0 16 74 23 38 14 2 29 45 77 6 67 0 26 456 13 36 41 37 25 48
Sht7 7 70 % 7 31 23 12 8 8 18 26 82 31 67 1 24 19 21 15 43 13 14 58
T |1 33§42 0 3121 75 18 26 13 24 35 32 77 16 72 2 22 16 7 8 51 44 25 28
U 1 4 8 80 4 8 21 14 2 7 8 26 34 83 5 76 4 15 387 9 46 61 26 13 50

THREE-FACED OCTAHEDRON.

1mn | Naumann.| Miller. As s A Ps Ps § ] ¢ Y
b 1 1gsllegs O 65 65 1 45° o1 44° 33| 44° 3% 55° 9| b54° 32" ] 54° 32 0° 43 0° 0} 69° 42
e 11 3 5 0 5 54 45 0 38 40 38 40 60 30 52 1 52 1 9 59 [ 59 0
f 1 1 2 3 0 3 32 45 0 33 41 33 41 64 46 50 14 50 14 17 201. 0 0O 50 29
g I 1 3 z 0 7 74 45 0 29 45 29 45 68 0 49 2 49 2 22 55 0o 0 4 0
h 1 1 2 2 0 2 21 45 0 26 34 26 34 70 32 48 11 48 11 27 16 0 0 38 57
k 11 3 30 3 31 45 0 18 26 18 26 76 44 46 30 46 30 37 52 0 0 26 32
1 11 4 4 0 4 41 45 0 14 2 14 2 79 59 45 52 45 b2 43 21 G 0 20 3

OCTAHEDRON,
1m» | Naumann.] Miller. As A A Ps P o 6 ¢ P
1 11 0 1 11 ‘ 45° O 45° o 45° o 54° 44’ 54° 44’ 54° 44’ 0° o 0 O 70°732' |




TWENTY-FOUR-FACED TRAPEZOHEDRON.

1mn (Naumann. Miller. s Az A Ps P2 ”n (] ¢ v
b 1 2 2|l 20 2 4 331 36°52 | 36°52 | 45° O | B59° 1/ 59° 1’| 46°39 | - 0° O { 13° 56| 61° 56
¢ 1 3 3 3+ 0 3 3 22 33 41 33 41 445 0 60 59 60 59| 43 19 0 0 19 45 58 2
b 1 2 2 20 2 2 11 26 34 26 34 45 0 656 54 65 b4 35 16 0 0 33 33 48 11
g 1 § 3 20 % 9 44 23 58 23 58 445 0 67 54 67 b4 32 8 0 0 38 51 4 12
Rl1 s ell 20 21l 8 33 2033] 2033 45 o] 70 39| 70 39| 27 56 0 0| 45 58 | 38 42
E-JJ1 3 3 30 3 3 11 18 26 18 26 445 0 72 27 72 27 25 14 0 0 50 29 35 6
1 1 4 4 4 0 4 4 11 14 2 14 2 45 0 76 22 76 22 19 28 0o 0 60 O 27 16
m 1 5 5 50 b 5 11 11 19 11 19 445 0 78 54 78 b4 15 48 0 0 65 b7 22 11
n 1101010010 }}10 11 5 43 5 43 445 0 84 19 84 19 8 3 0 0 78 7 11 22
0 11212112 012 |12 11 4 46 4 46 45 0 85 15 85 15 6 43 0 0 80 8 9 30
P 11616 (| 16 O 18 16 11 3 25 3 25 445 0 86 26 86 26 5 31| 0 0 82 39 7 8
q 14040 40 040 140 11 1 26 1 26 445 0 88 34 88 34 2 2 [ 87 6 2 52
. FOUR-FACED CUBE.
1mn }Naumann.| Miller. Az Az A Ps Py »n 0 ¢
Bl toloosel]l 650l 3°48| 0 0| 0 of 90° 0| 50°12| 39° 48| 53° 49| 10°54| 0° ¢
E 1 4 o 0 % 5 40 38 40 0 0 0 0 90 0 51 20 38 40 52 26 12 40 0 0
F 1 2 o 0 2 4 30 36 52 0 0 0 0 90 0 53 8 36 52 50 12 16 16 0 0
G 1 32w o 0 3% 3 20 33 41 0 0 0o 0 90 0 56 19 33 41 46 11 22 38 0 0
Hil 2 o 0 2 2 10 26 34 0 0 0 0 90 0 63 26 26 34 36 52 36 52 0 0
Kl 7o o 0 2 7 30 23 12 0o 0 0o 0 90 O 66 48 23 12 32 23 43. 36 0 0
L 1 £ o 0 % 5 20 21 48 0 0 0 0 90 0 68 12 21 48 30 27 46 24 ¢ 0
Mijjl 3 o 0 3 310 18 26 0 0 0 0 90 0 71 34 18 26 25 51 53 8 [}
Nil 4 o 0 4 4 10 14 2 [ 0o 0 90 0 75 58 14 2 19 45 61 56 0O 0
P 1 5w o 0 5 5 10 11 19 0 0 0 0 90 0 78 41 11 19 15 57 67 22 (Y]
Q 140 «© ® 040 40 10 1 26 [ 1) 0 0 90 0 88 34 1 26 2 56 87 8 0 0
RHOMBIC DODECAHEDRON.
1mn |Naumann.| Miller. A A M Ps Py »n 0 ) Y
"d §l1 lo{flo O 1 10{45° | 0° ¢ 0° O [ 90° O | 45° 0O | 45° O | 60° O o o 0° o
) CUBE.
1mn [[Naumann.] Miller. s A M Ps P A 0 ¢ i/
Clliowflow 0w || 1 00f 0 0] 0 0 |4° o [90° ¢ [90° 0| ¢ 07 0 0 [9° o] 00 ¢
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132. Hemihedral or Half-symmetrical Forms of the Cubic System.

In the holohedral or perfectly symmetrical forms of the
cubical system, the solid form of the crystal is bounded by
the lines where any one plane or face is intersected by the
adjacent planes or faces. There are, however, symmetrical
forms where half the number of the holohedral faces are
omitted, the planes of the remaining faces forming a solid by
the intersection of the adjacent planes.

These, called hemihedral or half-symmetrical faced forms,
are of two kinds,—the inclined, in which no one face is parallel
to the other; and the parallsl, in which the faces are parallel
in pairs, -

133. The #nclined hemihedral forms are the tetrahedron
(figs. 15 and 16, Plate IIL.), the twelve-faced trapezohedron
(figs. 17 and 18), the four-foced tetrahedron (figs. 19 and 20),
and the ste-faced ftetrahedron (figs. 21 and 22); these being
the hemihedral forms respectively derived from the octahedron,
three-faced octahedron, twenly-four-faced trapezohedron, and
six-faced octahedron, half of whose faces are produced to meet
each other.

There are two hemihedral forms with parallel faces,—the
twelve-faced pentagon, derived from the four-faced cube (figs.
23 and 24), and the irregular twenty-four-faced trapezohedron,
derived from the siw-faced octahedron.

The cube and rhombic dodecahedron do not produce hemi-
hedral forms, according to the laws of symmetry by which the
preceding are formed,

184. The tetrahedron (figs. 15 and 16, Plate II1.) is formed
by taking half the faces of the octahedron (fig. 7, Plate L.), in
the following order,~—C,C,C,, 0,0;0,, 0,0,C,, and 0,C,0,, and
producing these planes to intersect in the lines 0,0,, 0,0,
0,0,, 0,0;, 0,0,, and 0,0,. Referring to (fig. 14, Plate I1.),
we see that these edges are diagonals of the square faces of .
the cube in which the octahedron is inscribed, one edge for
each face of the cube. :

The tetrahedron is therefore geometrically inscribed in the
same cube in which the octahedron, from which it is derived,
is also inseribed. (Fig. 16, Plate 1I1.) shows the face of the
octahedron shaded on the corresponding face of the tetrahedron.

Since 0,0,, 0,0,, and 0,0, are diagonals of equal squares,
each face of the tetrahedron is an equilateral triangle, 0,0,0,
(fig. 88, Plate IV.). If we bisect the three sides of this
equilateral triangle in the points (), 0,, and C,, and join these
points, the equilateral triangle C,C,C; will be a face of the
octahedron. .
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If, therefore, we describe an equilateral triangle (fig. 83,
Plate IV.), having each of its sides equal 0,0,, (fig. 27, Plate
IV.), four such triangles joined together will form the net of a .
tetrahedron which may be inscribed in the cube, each of whose
faces equal the square 0,0,0,0; (fig. 27, Plate IV.).

Besides the tetrahedron just described, another in all respects
similar and equal to the former, except as regards its position
in the cube, may be formed by producing the four faces of the
- octahedron C,0,C;, C,0,C,, 0,C,0,, and C,C,0, (omitted in the
former case), to meet each other. It is customary to call one
of these fetrahedrons the positive, and the other the negative.
Crystals of the following minerals have faces parallel to those
of the tetrahedron :—

Blende (solphuret of zine), boracite, diamond, eulytine
(bismuth blende), fahlerz (grey copper), pharmacosiderite
(arseniate of iron), rhodizite, tennantite, and tritonite.

Naumann’s symbol for the tetrahedron is g, Miller’s k111,

135. The twelve-faced trapezohedron is a half-symmetrical
form with inclined faces derived from the three-faced octahe-
dron, bounded by twelve equal and similar trapezohedrons
(figs. 17 and 18, Plate ITI.). It is also called the deltoidal
dodecahedron, the trapezoidal dodecahedron, and the hemi-
tri-octahedron.

It is formed by producing the three faces of the three-faced
octahedron corresponding to each face of the octahedron which
are produced to form the tetrahedron, to form a solid by
their intersection with each other. -

Thus, comparing (figs. 17 and 18, Plate IIL.), with (fig. 6,
Plate 1.), the three faces meeting respectively in o, o, o,
and og of the three-faced octahedron, are produced to meet in
the points W,, W,, W, and W,, making, by their intersections,
a twelve-faced trapezohedron bounded by twelve equal and
similar trapeziums, W,C,0,0;, W,0,0,C,, &c.

If we call this the positive twelve-fuced trapezohedron, the
negative will be formed by the twelve faces of the three-faced
octahedron which meet in groups of three in the points o,, o,,
o, and o.. .

5To ob7ta,in a face of the twelve-faced trapezohedron geo-
metrically from the three-faced octahedron from which it is
‘derived.

Describe the (fig. 29, Plate IV.), as previously shown in § 35,
for determining the face of the three-faced octahedron. Pro-
duce C,4 to C,, and 0,D; to O; Take AC,=D;0,=0,4,
Join C,0;5 and AQ,,

Produce Md; to meet 40, in Wy, Join O;W,
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Then (fig. 32, Plate IV.) 0,0,0, being a face of the three-
faced octahedron, bisect 0,(; in d,. Join o0;d;, and produce
it to Wy, making o,d,W,=0,d,W; (fig. 29, Plate IV.). Join
C, W, and C,W,.

Then the trapezium o,0,W,0, is a face of the twelve-faced
trapezohedron derived from the three-faced octahedron whose
face 18 0,C,0,.

Twelve of these trapeziums form a net for the twelve-faced
trapezohedron which can be inscribed in the cube whose faces
are equal to the square 0,0,0,0; (fig. 27, Plate IV.).

The faces of the three-faced octahedron are shaded on those
of the twelve-faced trapezohedron (fig. 18, Plate III.).

The twelve-faced trapezohedron derived from the three-faced
octahedron 112, whose symbols are 20 Naumann, 12 2

Miller, and aF Brooke ; whose symbols are (1 2 2);
20

5 Naumann, « 12 2 Miller, %(a%) Brooke, occurs parallel

to faces of crystals of blende, diamond, and pharmacosiderite.
One derived from the three-faced octahedron 1 1 §,

§0 Naumann, 2 8 8 Miller, and ob Brooke, whose symbols

3 3
are respectively (11 3); 122; k2 33; and }(a®), occurs

parallel to faces of crystals of fahlerz.

136. The three-faced tetrahedron is a half-symmetrical form,
with inclined faces derived from the fwenty-four-faced trape-
zohedron. It is bounded by twelve equal and similar isosceles
triangles (figs. 19 and 20, Plate IIL.).

It 1s also called the trigonal dodecahedron, hemi-icositetra-
hedron, triakis-tetrahedron, pyramidal tetrahedron, and kuproid.

It is formed by producing the three faces of the twenty-four-
Saced trapezohedron, corresponding to each face of the octa-
hedron which are produced to form the tetrahedron, to form a
solid by their intersection.

Thus, comparing (figs. 19 and 20, Plate IIL) with (fig. 4,
Plate I.),the three faces of the twenty-four-faced trapezohedron,
meeting respectively in oy, o5, 05, and o, (fig. 4), are produced
to meet in the ponts O, O, O, and O, (figs. 19 and 20,
Plate ILL.), making by their intersections a three-faced tetra-
hedron, bounded by twelve equal and similar isosceles triangles,
0,0,0,, 0,0,0,, &c. :

If we call this the positive three-faced octahedron, the.
negative will be formed by the twelve faces of the twenty-
four-faced trapezohedron which meet in groups of three 1n
the points o,, 04, 05, and o;. :
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To obtain a face of the three-faced tetrahedron geometrically
from the twenty-four-faced trapezohedron from which it is
derived. Describe the (fig. 81, Plate IV.) as previously con-
structed, § 61, for determining a face of the twenty-four-faced
trapezohedron. Produce Ci4 to C, O,D; to Oy; make AC,
=D,0,=AC,. Join C0;, AO,. Then it will be found that
0,d, produced will cut Cy0; in Oy, ‘

Let 0,d,0,d, (fig. 39) be the face of the twenty-four-faced

. trapezohedron derived from (fig. 31, Plate IV.).

Produce o,d, to 0, and O,d, to O,, making 0,d,0, and
0,d,0, equal to 0,d,0; (fig. 31). Join 0,0, ; this line will pass
through C,. X

Then 0,0,0, is a face of the three-faced octahedron derived
from that of the twenty-four-faced trapezohedron whose face
is 0,d,0,d,. ‘

Twelve of these isosceles triangles form a net for the three-
Jaced tetrahedron which can be inscribed in the cube whose
faces are equal to the square 0,0,0,0; (fig. 27, Plate IV.).

The faces of the twenty-four-faced trapezohedron are shaded
on those of the three-faced tetrahedron (fig. 20, Plate IV.).

The following curious reciprocal relations may be observed
between the perfectly symmetrical and half-symmetrical forms
of the three-faced octahedron and the twenty-four-faced trape-
zohedron.

The hemihedral form of the three-faced octahedron is bounded
by trapeziums similar to the faces of the twenty-four-faced
trapezohedron,

The hemihedral form of the twenty-four-faced trapezohedron
is bounded by isosceles triangles like the faces of the three-
faced cube.

The three-faced octahedron is formed by placing a three-
faced pyramid of equal isosceles triangles on each of the
equilateral triangular faces of the regular octahedron as bases.
The three-faced tetrahedron is formed in like manner by
placing a three-faced pyramid of equal isosceles triangles on
each of the equilateral triangular faces of the regular tetra-
hedron.

The following three-faced tetrahedrons, having faces of
crystals parallel to them, have been observed in nature :—

3 3 3
1133); Z%Z Naumann, « 2 8 3 Miller, > Brooke; in

tennantite.

112 2); -2——;—)—2 Naumaunn, « 112 Miller, ¢* Brooke; in

boracite, eulytine, fahlerz, and tennantite.

3088 2225 4113; a5 in blende and fablers,
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2

x
s5); 293

187. The sia-faced tetrahedron is a half-symmetrical form
with inclined faces derived from the six-faced octahedron. It
is bounded by twenty-four equal and similar scalene triangles
(figs. 21 and 22, Plate IIL.).

It is also called the hemi-hew-octahedron, hexakis-tetrahe-
dron, and boracitoid.

It is formed by producing the six faces of the six-faced
octahedron, corresponding to each face of the octahedron
which are produced to form the tetrahedrom, to form a solid
by their intersection. Thus, comparing (figs. 21 and 22, Plate
II1.) with (fig. 3, Plate I.), the six faces of the six-faced octa-
hedron, meeting respectively in oy, 04, 04, and og (fig. 3, Plate L.),
are produced to meet in the points W,, W,, W, and W, (figs. 21
and 22, Plate IIIL.), making by their intersections a six-faced
tetrahedron, bounded by 24 equal and similar scalene triangles,
0,0, W,, 0,0, W, &ec. :

If we call this the positive six-faced tetrahedron, the nega-
tive will be formed by the twenty-four faces of the six-faced
octahedron which meet in groups of six in the points o,, o,, o,
and o, (fig. 3, Plate I.). To obtain geometrically a face of the
six-faced tetrahedron from the six-faced octahedron from which
it is derived, describe the (fig. 85, Plate IV.), as previously
constructed, § 68, for determining a face of the six-faced
octahedron. Produce Cj4 to Cg O,D; to O,; make AC,=
D0,=0,4. Join C;0; and AO0;. Produce No,d; to meet 40,
in Wy, and join C,W,. ,

Then (fig. 36, Plate IV.) let C,0,d, be a face of the six-faced
octahedron constructed as in § 69.

Produce o,d, to' W, and make o0,d, W,=0,d,W,, fig. 35.

Join O, W,. Then the scalene triangle o,W,C, is a face of
the six-faced tetrahedron derived from the six-faced octahedron
whose face is C,0,d,. Twenty-four such scalene triangles form
a net for the six-faced tetrahedron which can be inscribed in
the cube whose faces are equal to the square 0,0,0,0, (fig. 27,
Plate IV.). The faces of the six-faced octahedron are shaded
on those of the six-faced tetrahedron (fig. 22, Plate II1.).

The following six-faced tetrahedrons, having faces of crystals

- parallel to them, have been observed in nature:
3
$(1$3); 3‘2)?’ Naumann; « 8 2 1 Miller; §(bt &% b%)

Brooke; in crystals of the diamond,

11 44); s k1 14; a*; in blende.

; k1155 a5; in blende.
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L1 8 EN N 508 . 1.1
3(1 £ 5) Naumann ; €531 Miller; (b 10% b7)

2

Brooke; in crystals of boracite.

By the construction fig. 85, the ratio ivgﬁ may be readily
5

determined by plain trigonometry, just as the ratio Aoy Gas

A0,
in § 73.
1t can also be readily determined by geometry of three
dimensions. For (fig. 22, Plate II1.) W, is a point in each of
the three planes 0,0,d,, Cy0,dy, Ci04d;.
Now the equation to the plane C0,d, referred to rectangular
co-crdinates, AC, AC,, AC,, is
Zy¥4Z2=1 (A
m n 1
To the plane Cy0,d, is %+ﬂ+3=1 (B)

n o m

To the plane C,0,d, is—iv—-?—/+—f=1 (C). (Sece fig. 31%,
no m

and fig. 32%, Plate IV.*)
And since @, y, # will be the same for the point 1V, where these
planes meet,

(A)—=(C) = (l+1\ +y<1+l)=o.
m n/ n mn
Therefore v= —y.
Also (A—B) mG,4)+zG-l>=a.
m ‘ m
And z==.
1
=Y == —
1411
Vit n
But AWp=a2 442 4= 'f .
1+——~)
m nw
And AW,= \1/3 = fi()l .
1411 41
Vi{s n m n

‘Again, let © be the angle which the normals of the faces
C,0,d,, Cy04d; make with each other, or 180°—w be the angle
of inclination of the two faces of the six-faced tetrahedron (fig.
21, Plate IIL.), over the edge C,W,.

Then since m 7 1 is the symbol of 0,0,d,,

and —n—m 1 that of C,04d4,
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-2
cos w= ___T.".'_’P_l_ (See § 107.)
1+_—§+')—z—2
Or by § 110,
COS W= —CO8 P, COS Py—COS P, COS Py +COS p; COS P,

= cos? p,;—2cos p, cos p,.
‘Which may be computed at once by Byrne’s dual logarithms,
or thus adapted for ordinary logarithmic computation.

08 = cos® pl{l - %wa}

cos? p,
Let tan q =2.998 Py 008 Py C0S Py COS Py
cos” p, cos 60 cos® p,

cos? p, cos (a+45)°
cos a sin 45°

138. Limits of the Form of the Siz-faced Tetrahedron.

As m and » approach in magnitude to unity, the six-faced
tetrahedron approximates to the tetrahedron.  When m=n=1,
the six-faced tetrahedron becomes the tetrahedron, the points
Wy, W, W, and W, (fig. 21, Plate III.) coincide with the
pomnts O,, 0,, O, and O, (fig. 15). C,W, and C,W, become
the straight line 0,0,, &c., and the six faces round each point
01, 04, 0, and og lie in the same plane.

As m and n increase in magnitude greater than unity, and
also in equality to each other, the six-faced octahedron approxi-
mates to the cube. When m and n are both infinitely great,
it coincides with it. In this case each of the four faces which
meet in the six points (), C,, C,, &c., 0, lie in the same plane.
Asm alg)roaches to unity, while » increases in magnitude, the
six-faced tetrahedron approximates to the rhombic dodeca-
hedron. When m=1 and n=o0 it becomes the rhombic
dodecahedron, and the two faces which lie on each side of the
twelve lines W,0,, W,0,, W0, &c., lie in the same plane, and
the Co and OW become equal.

When m equals unity, while # remains finite, the six-faced
tetrahedron becomes the twelve-faced trapezohedron, and the
faces on each side of the twelve edges W,0, lie in the same
plane, but the edges Co and C W are not equal.

When m and n are equal to each other, both finite and greater
than unity, the six-faced tetrahedron becomes the three-faced
tetrahedron, and the faces on each side the twelve lines C)0,,
Cy0,, Cy0,, &c., lie in the same plane. W coincides with O and
WCOW becomes a straight line. When m remains finite, and
7 becomes infinite, the six-faced octahedron becomes the four-
faced cube, and its scalene triangles become isosceles.

From the above it follows that the cube, rhombic dodeca-

Then cos w=cos? p, (1—tan a)=
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hedron, and four-faced cube, which have no hemihedral forms
with inclined faces, are limiting forms of the six-faced tetra-
hedron.

Also that all the formule of the tetrahedron, three-faced
tetrahedron, and twelve-faced trapezohedron may be derived
from those of the six-faced octahedron by giving the proper
values to m and =n.

139. Table showing the symbols and formule of the half-
symmetrical forms which are not included in the table § 131,
for the holohedral forms. The letters refer to holohedral forms,

131.

s SIX-FACED OCTAHEDRON.

Naumann.| Miller. Brooke. | Ratio 4w Angle w.

40
) 303 -
Hy(133) | —— | =321 | ;057 3 69° 5
503% ] 11
L3135 | —5— | £531 | (05759 5 57 7

- THREE-FACED TETRAHEDRON.

104

et (133 3 «223 | 3@ 1 86° 38’
202

fy(22) | 5 |el112| 3@ 1 70 32
303

k3133 | == | 113 | 3@ 1 50 29
404

13(aa) | —— | «114| (¥ 1 38 57
505

my155) | —— [ 115| 3@ | 1 31 35

TWELVE-FACED TRAPEZOHEDRON.

10 .
fruiy | 5 £233 [ %@ 3 97° 51/
20 ,
hyt1e) | 5 | c112]| 3@ 2 % 0
TETRAHEDRON.
0
0k(111) 3 k111 | 3@ 1 109° 28’

140. The pentagonal dodecahedron is a half-symmetrical
form with parallel faces derived from the four-faced cube.” It
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is bounded by twelve equal and similar pentagons. These
pentagons are, except in one species of the pentagonal dode-
cahedron, irregular (figs. 23 and 24, Plate IIL.); four edges
or sides of the pentagon being equal, and the fifth unequal.
When the five edges are equal, the pentagonal dodecahedron is
called the regular pentagonal dodecahedron, and is one of the
five Platonic bodies.

It is also called the hemi-hewa-tetrakedron and pyritoid.

It is formed from the four-faced cube by taking three out
of the six faces (fig. 2, Plate I.) which meet in the points o,
0y, &c., 0y ; taking the faces alternately and producing them
f.o form by their intersections a solid by twelve pentagonal
aces.

_Thus the faces C,0,0,, 010,05, 0,0,0;, (50,04, C30,0,, C5050,,
00506, 0,050;, 050,04, Cyo704, Ug0:05, and Cyogo; are produced to
form the posttive pentagonal dodecahedron; the twelve
remaining faces to form the negative pentagonal dodecahedron.
The faces so produced meet in twenty-four equal edges 0,3,
0,8, &c. (figs. 23 and 24, Plate IIL); and six other edges, but
unequal to the former 8,3, 3,3,, &c.

To obtain a face of the pentagonal dodecahedron geo-
metrically from that of the four-faced cube from which 1t is
derived (fig. 87, Plate IV.), being described-as in § 53.
Produce C,d, to meet D,C, in 3,.

Describe é’lolo4 as in § 54, a face of the four-faced cube
(fig. 34, Plate 1V.). Bisect 0,0, in d;. Produce O,d, to 8,
making C,d,8,=0,d, ¥, (fig. 37). Join 0,8, and 0,8,. Through
0, draw 8401312 parallel to o,0,.

Then (fig. 34) take (9, and (¢, ench equal 0,9, (fig. 37).
Join 0,8, and 0,3,.

Then 84820181104 is a face of the pentagonal dodecahedron
derived from the four-faced cube whose face is C,0,0,.

Twelve such pentagonal faces form a net for the pentagonal
dodecahedron which can be inseribed in the cube whose faces
are equal to the square 0,0,0,0; (fig. 27, Plate IV.).

The faces of the four-faced cube are shaded on those of the
pentagonal dodecahedron (fig. 24, Plate IV.).

The following pentagonal dodecahedrons, having faces of
crystals parallel to them, have been observed in nature :—

118 ]; iod Naumann; = 54 0 Miller; + bTE Brooke,

in pyrite.
171 4 004, 430 1 3 g ;
?[1?00];‘-—2_,77 3 0; % 03, in pyrite,

0%

2

5 a.
%[I%w];fgi; 732 0; 1%, in pyrite,
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002
2
lerz, gersdorfitte, and pyrite.

$[1 8 0]; 0_0_3_3; w3 10; 113 in haunerite, pyrite, and

112 w]; ; w2 10; 18 in cobaltine, cubane, fah-

sal ammoniac.

41 4 o] ; w_gi ; m410; 4, in cobaltine and fahlerz.

141. Platonic bodies.—There are five solid bodies described
by the ancient geometers as regular solids. From their
mathematical properties having been investigated by Plato
and his followers, they are called the Platonic bodies. They have
all their faces, edges, and angles, whether plane or solid, equal
for each body.

They are the tetrahedron, bounded by four equal faces, each
being an equilateral triangle ; the cube, bounded by six equal
squares ; the octahedron, bounded by eight equal faces, each
being an equilateral triangle; the pentagonal dodecahedron,
bounded by twelve equal and equilateral pentagons; and the
teosahedron, by twenty equal faces, each being an equilateral
triangle.

The first three, described by Plato himself, have been
observed in natural crystals. The last two, described after
his death, have not been observed in nature.

The regular pentagonal dodecahedron is that particular case
of the pentagonal dodecahedron, where the unequal edge, such
as 0,9, (fg. 23, Plate IIL.), is equal to the other four 8,0, 0,3,,
d,0,, and 0,0,

In this case m=cot k3=1_+2—‘/5= 1-618034,

but cot 81° 48’'=1-618085.
Hence A\,=381° 43’ true to minutes.
The value of m is generally determined by continued
. fractions.

Thus m=34=1-619046 and cot 31° 42'=1-61914

m=12=1-625 cot 31° 36'=1-62548
m=§ =16 cot 32° (’=1-60033

The regular icosahedron is derived from the particular
pentagonal dodecahedron in which the edge 3,8,=a line joining
the points &, and 3,. In this case

mi=cot 13=.3+2ﬂ=2-61803=cot 20° 54/,
where the ratio for m expressed in its lowest terms is m=4$%.
In this particular pentagonal dodecahedron each solid angle
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at 0y, 0, &c., 05, i cut off through the lines 8,3, &,5;, and
350, &c., forming a solid bounded by twenty equilateral
triangles,—eight being parallel to the faces of the octahedron
inscribed in the dodecahedron, and the remaining twelve faces
of the pentagonal dodecahedron. ,

Ozonam, in his Mathematical Recreations, remarks that
““ The ancient geometricians made a great many geometrical
speculations respecting these bodies ; and they form almost the
whole subject of the last books of Euclid’s Elements. They
were suggested to the ancients by their believing that these
bodies were endowed with mysterious properties, on which the
explanation of the most secret phenomena of nature depended.”

142, The irregular twenty-four-faced trapezohedron is a half-
symmetrical form with parallel faces derived from the six-faced
octahedron, It is called the irregular twenty-four-faced
trapezohedron because its trapezoidal faces have only two
equal edges, and to distinguish it from the twenty-four-faced
trapezohedron, which is a holohedral form and has the four
edges of its trapezoidal faces equal in pairs.

It is bounded by twenty-four irregular trapeziums (figs. 25
and 26, Plate IL.).

It is also called the hemi-octakis-hexahedron, the trapezoidal
1cosi-tetrahedron, the dyakis dodecahedron, the diploid, and
the diplopyriteid.

It is formed from the six-faced octahedron by taking three
out of the six faces which meet in o, o, &c., o5 (fig. 81,
Plate I.), and producing them to meet each other and form a
golid bounded by twenty-four irregular trapeziums.

Thus (fig. 8, Plate I.) the twenty-four faces C,0,d,, Cyo,d;,
0,0,d,, Cy0,ds, Cy0,d,, Cs0,d,, &c., are produced to meet in the
points 3, &,, &c., %12 (fig. 25, Plate III.), to form the positive
irregular twenty-four-faced trapezohedron.

The remaining twenty-four-faces if produced will form the
negative trapezohedron.

To obtain a face of the irregular twenty-four-faced trapezo-
hedron geometrically from that of the six-faced octahedron
from which it is derived.—Describe (fig. 35, Plate IV.), as
previously constructed for finding a face of the six-faced
octahedron, § 68 and § 137. Join O,N cutting O,d, produced
in 8. “Let C,0,dy (fig. 38, Plate IV.) be a face of the six-faced
octahedron. Produce C,d; to &, and make 0,d3,, fig. 38,
=0,d,$, (fig. 85). Join 0,3;, onbase C,0,, describe the triangle
0,8,0,, having C,8,= 0,3, fig. 35, and 0,8, = 0,3, fig. 38.

01550231 will be a face of the irregular twenty-four-faced
trapezohedron, and twenty-four such faces will form a net for
the same, which can be inscribed in a cube whose faces are

equal to the square 0,0,0,0, (fig. 27, Plate IV.).



443

The faces of the six-faced octahedron are shaded on those of
the irregular twenty-four-faced trapezohedron in (fig. 26,
Plate II1.).

The following wrregular twenty-four-faced trapezohedrons,
having faces of crystals parallel to them, have been observed
in nature,

505 ) 1.1 .1

1[155); & 5 £ Naumann; = 54 3 Miller; b b% b3

Brooke, in crystals of pyrite.

204 1.L.1., .
1[1427; 2; w432; b* b¥ b3, in linnéite.

2 2
S,

15 Q18 1o
T 31, 71511 7; 18 b1T b7, inlinnéite.

11128); 393, r321; 5557 1, in cobaltine, hauerit
T T ) 5 ) T k] , 1n. cobaltine, hauerite,
and pyrite. ,

ir135); 2938 205 bt i oo

$[135]; —-2; =538 1; b¥ b® b, in pyrite.

115103 908, 1106 1; 570 47 b1, in pyrite.

1[124]; il_gﬁ; w42 1; 5% ¥ b1, in pyrite.

1115 107; !’T‘)?; 7105 1; 579 5% B, in pyrite.

1438. Let u be the supplement of the angle of adjacent faces
over the edges, such as 03,, 0,3,, 0,3, &c.

v that over the edges o,3,, ol§5, 0,0,, &c.

Then p is the inclination of normal of face C,o,d, to that of
Cqo,dy, fig. 26, Plate III., but indices of C,0,ds are m 17, and
of Cyo,dg m 1 n (fig. 81%, Plate IV ¥),

SL ]

Hence cos u= 7;” 11 n

S+t

Also v is the inclination of normal of face C,dyo; to that of
C,d,o, (fig. 26 Plate IIL.), but indices of C,d.0, are m 1 n, and
of 0,d,0;, nm 1 (fig. 81%, Plate IV %),

1,1,

mn m n

LRI
m

mP

Hence cos v=
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Or, expressing pt and v in terms of the polar distances C,0,d;
=PaPyps and Cyo,ds= —pyp,py.
nd cos p=cos? p, —cos? p,+cos? p,,
Odsor=p,p1ps  C1dh0,=Pspapy,
CO8 ¥=C08 P, COS Pg-COS P, P, +CO8 P1P3;
formule calculable at once by Byrne’s dual logarithims, or
easily adapted to logarithmic computation by subsidiary angles.
All the formule for the pentagonal dodecahedrons are
immediately derivable from those of the irregular twenty-four-
Jaced trapezohedron,

144.. Limits of the Form of the Irreqular Twenty-four-faced
Trapezohedron.

As m and n approach in magnitude to unity, the irregular
twenty-four-faced trapezohedron approximates to the octa-
hedron; and when s and = both equal unity, it becomes the
octahedron. In this case the three planes meeting in the points
015 0, &iC., 0 {fig. 25, Plate IIL.), lie in the same plane, and
the edges, such as (,3,, C,3,, lie in the same line.

As m and n both increase in magnitude and become infinitely
great, this form approximates to and becomes the cube. In-
this case the four planes meeting in (), C,, &c., C;, become
the same plane, and the edges, such as 0,8,0,, 0,8;0;, &c., the
same straight line.

As m approaches to unity while n increases in magnitude
and becomes infinitely great, the form approaches the rhombic
dodecahedron. When m equals unity, while # remains finite,
the form becomes the three-faced octahedron. When m and n
equal each other and are both finite and greater than unity,
the form becomes that of the regular twenty-four-faced
trapezohedron, Finally, when # remains finite and greater
than unity and » becomes infinite, the form becomes that of
the pentagonal dodecahedron.

145. As yet the half-symmetrical forms with parallel faces,
the pentagonal dodecahedron and the irregular twenty-four-
faced trapezohedron have only been found in combination with
those of the full symmetrical forms of the cubical system, and
never with those of the half-symmetrical forms with inclined
faces,

146. For the pentagonal dodecahedrons the following are
the values of the angles u and ».

ELl[l3oo] u=77°19 »=60°48.

Fi[lic]pu=r73 44 v=61°19,
6L[13c0] p=6728 »=62°3"
Hi[l2c0] u=53° 8 »=66°25,
ML [1800] n=86°52 »="72°389,
N L[14o]n=28 4 p="76°23,
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For the irregular twenty-four-faced trapezohedrons the
following are the values of u and v.

Bi[l & 3] pu=68°54 +»=19°57.
Ei[1 & 2] u=67°16" v=26°17.
G L{1 15 35] u=67°18" »=28°32".
Hi[l § 2] p=64°87 »=38°1%,
K1 8] u=63°37 v»=53°55.
Li[1 2 5] u=60°56" »=4855".
Mi[1 510] pu=61°41" »=56°18.
NL[1l 2 4] pu=51°4y »=48°11".
Pl 510) p=22°46" »=72°17.

147. Some crystals have a tendency to split in directions
parallel to a certain form. This is called a cleavage-plane. If
they split readily, the cleavage is called a perfect one. Sub-
stances which crystallize in the cubical system have only been
observed to split or cleave parallel to the planes of the cube,
octahedron, and rhombic dodecahedron.

Minerals whose crystals cleave parallel to the faces of the cube,
those printed in italics indicating that the cleavage is easy
and perfect :—

Alabandine. Galena. Pyrite.
Altaite. Gersdorflite. Pyrochlore.
Analcine, Hauerite. Salt.
Argentite. Iridium. Skulterudite.
Chromite. Iron. Smaltine.
Clausthalite. Lerbachite. Spinelle.
Cobaltine. Linnéite. Stannine.
Cubane. Magnetite. Steinmannite.
Embolite. Naumannite, Sylvine.
Franklinite. Periclase, Ullmanite.
Gahnite. Perowskite.

Minerals whose crystals cleave parallel to the faces of the
octahedron :—

Alum, Diamond. Griinauite,
Arsenite. Eisennickelkies. Magvetite.
Boracite. Fahlerz. Sal ammoniac.
Bornite. Fluor. Senarmontite.
Chromite. Franklinite. Smaltine.
Cuprite. " Gahnite. Spinelle.

Minerals whose crystals cleave parallel to the faces of the
" rhombic dodecahedron :—

Alabandine. Garnet. Smaltine.
Amalgam. Hauyne. Sodalite.
Argentite. Tttnerite. Stannine.
Blende. Leucite. . Tennantite.
Eulytine. Skutterudite.

VOL, II. 21



148. In the following table all substances which crystallize
on the cubical system are arranged according to their chemical
formulas; theletters c, o, and d, representing that faces parallel
to the cube, octahedron, and rhombic dodecahedron, occur on

their crystals.

The crystals having faces parallel to other

forms have been previously enumerated under those forms.
The table is principally taken from Rammelsberg’s Crystallo-

graphic Chemistry.

Chemical Formule of Substances crystallizing on the Cubical
System.

Ag, Silver (ocd)
Au, Gold (0cd)

Cu, Copper (oc)
Fe, Iron (oc)

Hg, Mercury (o)
Ir, Iridium (o c)
Pb, Lead (o)

Pt, Platinum (c)

P, Phosphorus (o d)
C, Diamond (ocd)

Mg, Periclase (oc)
Ni (oc)

Cd (ocd)

G, Cuprite (o cd)
Sb, Senarmontite (o)
As, Arsenite (o)

U U, Pechuran (o)
Ir + Os, Irite (o)

Ca + Ti, Perowskite (o d)
Ca + 4B, Bhodozite (o0 d)

Fe + (He T4), Iserine (o cd)
Cw’ and Cu’ Fe’ (0) -
Mn’, Alabandine (o ¢ d)

Zn’, Blende (o c d)

PV, Galena (o cd)

Pb’ Fe’

Pb’ Sb™, Steinmannite (o c)
Ag/, Argentite (0cd)

Mn”, Hanerite (ocd)

Fe”, Pyrite (0cd)

Ni’, Griinauite (o c)

Ni As, Rammelsbergite (o ¢ d)
Co As, Smaltine (o cd)

Co? As?, Skutterudite (ocd)
(Ni Co)™ As"

(Co Fe) As, Safflorite (oc)
Ni”+ Ni(Sb As) Cobaltine (o c)
K Fl

Na F1 (cd)

Ca F1 (0 cd) Fluor

K O, Sylvine (co)
Am (], Salammoniac (o ¢ d)
Na Cl, Salt (cod)

Li Cl (c)

Ag Cl, Kerate (cod)
U Cl (c)

Ga Cl

Co Cl 4 8 aq (oc)

K Br (c)

Na Br (¢)

Ag Br, Bromite (c o)
K1 (cod)

AmI (cod)

Nal (c)

Zn 1 (o)

Pb I (o)

K Cy

Am Cy (oc)

Na Cy

Ti Cy+3Ti* N (c)
Ag Hg, Amalgam (o cd)
Agf Hg, Arquerite (o)

Ag Se, Naumannite (c)

Ag Te, Petzite (c)
Pb Se, Clausthalite (¢)
PbSe and Hg Se, Lerbachite (c)
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Pb Te, Altaite (c)

Mg + Al Spinelle (o d)

Zn+-Al, Gahnite (o c)

Fe + Fe, Magnetite (ocd)

Fe+ Cr, Chromite (o)

Fe-+Mn, Franklinite ocd

Al S3+18 aq

Cr 53+ 15 aq

Ba N (o¢)

Sr N (oc)

PbN (oc)

Na €l (co0d)

Ni Cl+6 aq

Co Ci+6 aq

CuCl+6 aq (o)

K Br (cod)

Na Br (cod)

Mg Br+6 aq

Zn Br+6 aq

Ni Br+6 aq

Co Br+6 aq (oc)

AnT@

Mg3 Br

Mg?® B¢, Boracite (c o d)

Na B2+ 5 aq, Borax

Na H+12 (Na §b)+7 aq (o)

3 (¥o As+4 aq) + H, Ee, Phar-
macosiderite (o ¢ d)

Gy Ee”+2 Fe, Cubane (c)

Cw3 Ee”, Bornite (c o d)

Co’ Ge””, Linnéite (c o)

Pb? As”, Dufrenoysite (d)

R# (Sb” As™), Fahlerz (o c d)

R=Pb, Fe, Zn, and Cus

(N1 Co)® S+

Ni Sb+ Ni”, Ullmanite {o ¢ d)

4(Fe’' 2Ca’) + As”, Tennantite
{ocd)

Na’s Sb™ +18 aq (o d)

Ee' NY/, Eisennickelkies (o)

(26w + Sn”) + (¢ + Sn"),
Stannine (c d)

Ni’'+ Ni As?, Gersdorffite (o c)

Am Ol+Mn Cl+aq (cd)

Ca Cl+5Hg Cl+8 aq (o)

[2 (K Am) Cl+Ee C13]+2 aq

(Ni C14+2N H3) +aq {ocd)

Am Cl+4Sn Cl1? (ocd)

K Cl4+Pt C12 (o)

(Pb Cl1+Pb) +{Cu C14Cu)+
aq, Percylite (ocd)

2 AgBr+3AgCl,Emboliteoc

Zn Br+N H? (o)

Ca Br+N H? (0}

NiI+3N H? (o)

K Cy+Zn Cy (o)

K Cy+0Cd Cy (o)

K Cy+Hg Cy (o)

K Cy+Ag Cy (o)

K § 4+ Al S34 24 aq, Alum
(ocd)

Am B+Al S34+24 aq

Am S+Fe S3424 aq

K §+Ma S3424 aq

Am S+Ma S3+24aq

Am S+Cr S$3424 aq )
3(Fe K) S+2Fe S3412 aq
Bi 543, Rulytine (oc¢d)

Na Si+ Al Sis, Analcine (c)
K Si+ Al Si3, Leucite (d)

R® Si?+ R Si, Garnet (cd)
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Where R = Ca, Fe, Mn,

and R'=Xe, Al

Ca® Si*+Cr Si, Uwarrowite
fod)

(Mn, Fe)® Si?+Be Si+Am 8,
Mn O, Helvin (0)

Na Cl + 3 Na Si+8al Sj,
Sodaltite, (c d)

(Ni N+ 2N H) +aq (0 ©)

(Na Ca + 8Zn C) + 8aq (o)

Fe? As + Eed As? + 18aq (c)

NaW+WW(c)

Na Ac +2 B Ac (o)

C1 (HSCl) N

C12 (HS Br) N (o)

C?% H16 0% Camphor (o)

Substances whose formulee are
undetermined :—

Hauyne, or Lapis Lazuli, a
silicate of Alumina, Soda,
and Lime (ocd)

Pyrochlore, Titanium ore (o cd)

Tritonite, Silicate of oxides of
Cerinm and Lanthaniom (c)

Voltaite, Hydrous sulphate of
iron, &c. (ocd)

*yx* A discussion* followed, in which C. Brooxkkg, Esq., F.R.8., Professor
Mogrris, the HoNORARY SECRETARY, and the CHAIRMAN took part ; after

which—

The Méeting was adjourned.

* This discussion having been of a very general character, it has not been

found necessary to inserf, it.
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